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I. INTRODUCTION 

In this article we describe the most precise measure- 
ment to date of the mass of the W boson, using data 
collected in 19941995 with the DO detector at the Fer- 
milab Tevatron fl collider [l-3]. 

The study of the properties of the W boson began 
in 1983 with its discovery by the UAl [4] and UA2 [5] 
collaborations at the CERN pp collider. Together with 
the discovery of the 2 boson in the same year [6,7], it 
provided a direct confirmation of the unified model of 
the weak and electromagnetic interactions [8], which - 
together with QCD - is now called the Standard Model. 

Since the W and 2 bosons are carriers of the weak 
force, their properties are intimately coupled to the struc- 
ture of the model. The properties of the 2 boson have 
been studied in great detail in e+e- collisions [9]. The 
study of the W boson has proven to be significantly more 
difficult, since it is charged and therefore can not be res- 
onantly produced in e+e- collisions. Until recently its 
direct study has therefore been the realm of experiments 
at pp colliders which have performed the most precise 
direct measurements of the W boson mass [lo-121. Di- 
rect measurements of the W boson mass have also been 
carried out at LEP2 [13-161 using nonresonant W pair 
production. A summary of these measurements can be 
found in Table XV at the end of this article. 

The Standard Model links the W boson mass to other 
parameters, 

i 1 
sinew&Z?’ (1) 

In the “on shell” scheme [17] 

Mw cOsew = - 
Mz ’ 

where Bw is the weak mixing angle. Aside from the radia- 
tive corrections AT, the W boson mass is thus determined 
by three precisely measured quantities, the mass of the 2 
boson Mz [9], the Fermi constant GF [18] and the elec- 
tromagnetic coupling constant cx evaluated at Q2 = M$ 
[19]: 

MZ = 91.1865 f 0.0020 GeV, (3) 
GF = (1.16639f 0.00002) x 10m5 GeVm2, (4 

(Y = (128.896 f 0.090)~‘. (5) 

From the measured W boson mass we can derive the size 
of the radiative corrections AT. Within the framework of 
the Standard Model, these corrections are dominated by 
loops involving the top quark and the Higgs boson (see 
Fig. 1). The correction from the ti; loop is substantial be- 
cause of the large mass difference between the two quarks. 
It is proportional to m: for large values of the top quark 
mass mt. Since mt has been measured [20], this con- 
tribution can be calculated within the Standard Model. 

For a large Higgs boson mass, mH, the correction from 
the Higgs loop is proportional to In mH. In extensions to 
the Standard Model new particles may give rise to addi- 
tional corrections to the value of Mw. In the Minimal 
Supersymmetric extension of the Standard Model (MSS- 
M), for example, additional corrections can increase the 
predicted W mass by up to 250 MeV [21]. 

FIG. 1. Loop diagrams contributing to the W boson mass. 

A measurement of the W boson mass therefore consti- 
tutes a test of the Standard Model. In conjunction with 
a measurement of the top quark mass the Standard Mod- 
el predicts Mw up to a 200 MeV uncertainty due to the 
unknown Higgs boson mass. By comparing with the mea- 
sured value of the W boson mass we can constrain the 
mass of the Higgs boson, the agent of the electroweak 
symmetry breaking that has up to now eluded experi- 
mental detection. A discrepancy with the range allowed 
by the Standard Model could indicate new physics. The 
experimental challenge is thus to measure the W boson 
mass to sufficient precision, about O.l%, to be sensitive 
to these corrections. 

II. OVERVIEW 

A. Conventions 

We use a Cartesian coordinate system with the z-axis 
defined by the direction of the proton beam, the x-axis 
pointing radially out of the Tevatron ring and the y-axis 
pointing up. A vector p’is then defined in terms of its 
projections on these three axes, p,, pv, p,. Since pro- 
tons and antiprotons in the Tevatron are unpolarized, all 
physical processes are invariant with respect to rotations 
around the beam direction. It is therefore convenien- 
t to use a cylindrical coordinate system, in which the 
same vector is given by the magnitude of its componen- 
t transverse to the beam direction, pi, its azimuth 4, 
and p,. In fl collisions the center of mass frame of the 
parton-parton collisions is approximately at rest in the 
plane transverse to the beam direction but has an unde- 
termined motion along the beam direction. Therefore the 
plane transverse to the beam direction is of special im- 
portance and sometimes we work with two-dimensional 
vectors defined in the x-y plane. They are written with a 
subscript T, e.g. p’T. We also use spherical coordinates by 
replacing p, with the colatitude t9 or the pseudorapidity 
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q = - In tan (e/2). The origin of the coordinate system 
is in general the reconstructed position of the pjj interac- 
tion when describing the interaction, and the geometrical 
center of the detector when describing the detector. For 
convenience, we use units in which c = fi = 1. 

B. W and 2 Boson Production and Decay 

In @ collisions at fi = 1.8 TeV, W and 2 bosons are 
produced predominantly through quark-antiquark anni- 
hilation. Figure 2 shows the lowest-order diagrams. The 
quarks in the initial state may radiate gluons which are 
usually very soft but may sometimes be energetic enough 
to give rise to hadron jets in the detector. In the reac- 
tion the initial proton and antiproton break up and the 
fragments hadronize. We refer to everything except the 
vector boson and its decay products collectively as the 
underlying event. Since the initial proton and antipro- 
ton momentum vectors add to zero, the same must be 
true for the vector sum of all final state momenta and 
therefore the vector boson recoils against all particles in 
the underlying event. The sum of the transverse momen- 
ta of the recoiling particles must balance the transverse 
momentum of the boson, which is typically small com- 
pared to its mass but has a long tail to large values. 

FIG. 2. Lowest order diagrams for W and Z boson produc- 
tion. 

We identify W and Z bosons by their leptonic decays. 
The DO detector (Sec. III) is best suited for a precision 
measurement of electrons and positrons’, and we there 
fore use the decay channel W + ev to measure the W 
boson mass. 2 + ee decays serve as an important cal- 
ibration sample. About 11% of the W bosons decay to 
ev and about 3.3% of the Z bosons decay to ee. The 
leptons typically have transverse momenta of about half 
the mass of the decaying boson and are well isolated from 
other large energy deposits in the calorimeter. Interme- 
diate vector boson decays are the dominant source of 
isolated high-pT leptons at the Tevatron, and therefore 

‘In the following we use “electron” generically for both elec- 
trons and positrons. 

these decays allow us to select a clean sample of W and 
Z boson decays. 

C. Event Characteristics 

In events due to the process m + (W + ev) + X, 
where X stands for the underlying event, we detect the 
electron and all particles recoiling against the W with 
pseudorapidity -4 < q < 4. The neutrino escapes unde- 
tected. In the calorimeter we cannot resolve individual 
recoil particles, but we measure their energies summed 
over detector segments. Recoil particles with 171 > 4 
escape unmeasured through the beampipe, possibly car- 
rying away substantial momentum along the beam direc- 
tion. This means that we cannot measure the sum of the 
z-components of the recoil momenta, u2, precisely. Since 
these particles escape at a very small angle with respect 
to the beam, their transverse momenta are typically s- 
mall and can be neglected in the sum of the transverse 
recoil momenta, ii~. We measure ‘& by summing the ob- 
served energy flow vectorially over all detector segments. 
Thus, we reduce the reconstruction of every candidate 
event to a measurement of the electron momentum p’(e) 
and CT. 

Since the neutrino escapes undetected, the sum of all 
measured final state transverse momenta does not add to 
zero. The missing transverse momentum #T, required to 
balance the transverse momentum sum, is a measure of 
the transverse momentum of the neutrino. The neutrino 
momentum component along the beam direction cannot 
be determined, because ut is not measured well. The 
signature of a W + ev decay is therefore an isolated high- 
pT electron and large missing transverse momentum. 

In the case of Z + ee decays the signature consists 
of two isolated high-pT electrons and we measure the 
momenta of both ieptons, p’(el) and p’(ez), and & in 
the detector. 

D. Mass Measurement Strategy 

Since pz(v) is unknown, we cannot reconstruct the ev 
invariant mass for W + ev candidate events and there- 
fore must resort to other kinematic variables for the mass 
measurement. 

For recent measurements [lo-121 the transverse mass, 

mT = d&T(hT(v) (1 - COfJ b#+4 - 4(v))) (6) 

was used. This variable has the advantage that its spec- 
trum is relatively insensitive to the production dynamics 
of the W. Corrections to mT due to the motion of the W 
are of order (cJT/Mw)~, where QT is the transverse mo- 
mentum of the W boson. It is also insensitive to selection 
biases that prefer certain event topologies (Sec. VIC). 
However, it makes use of the inferred neutrino pT and is 



therefore sensitive to the response of the detector to the 
recoil particles. 

The electron pi spectrum provides an alternative mea- 
surement of the W mass. It is measured with better reso- 
lution than the neutrino pi and is insensitive to the recoil 
momentum measurement. However, its shape is sensitive 
to the motion of the W and receives corrections of order 
qT/Mw. It thus requires a better understanding of the 
W boson production dynamics than the mT spectrum. 

The mT and pT(e) spectra thus provide us with t- 
wo complementary measurements. This is illustrated in 
Figs. 3 and 4, which show the effect of the motion of the 
W bosons and the detector resolutions on the shape of 
each of the two spectra. The solid line shows the shape of 
the distribution before the detector simulation and with 
QT=O. The points show the shape after QT is added to 
the system, and the shaded histogram also includes the 
detector simulation. We observe that the shape of the 
mT spectrum is dominated by detector resolutions and 
the shape of the pT(e) spectrum by the motion of the 
W. By performing the measurement using both spectra 
we provide a powerful cross-check with complementary 
systematics. 

i 60 65 70 75 80 85 90 9 

q (GeW 
FIG. 3. The mr spectrum for W bosons with qr = 0 

(-), with the correct qT distribution (o), and with detector 
resolutions (shaded). 

Both spectra are equally sensitive to the electron ener- 
gy response of the detector. We calibrate this response by 
forcing the observed dielectron mass peak in the 2 + ee 
sample to agree with the known 2 mass [9] (Sec. VI). 
This means that we effectively measure the ratio of W 
and 2 masses, which is equivalent to a measurement of 
the W mass because the 2 mass is known precisely. 

To carry out these measurements we perform a maxi- 

p,(e) WV) 
FIG. 4. The pT(e) spectrum for W bosons with QT = 0 

(-), with the correct qT distribution (o), and with detector 
resolutions (shaded). 

mum likelihood fit to the spectra. Since the shape of the 
spectra, including all the experimental effects, cannot be 
computed analytically, we need a Monte Carlo simulation 
program that can predict the shape of the spectra as a 
function of the W mass. To perform a measurement of 
the W mass to a precision of order 100 MeV we have to 
estimate individual systematic effects to 10 MeV. This 
requires a Monte Carlo sample of 2.5 million accepted W 
bosom for each such effect. The program therefore must 
be capable of generating large samples in a reasonable 
time. We achieve the required performance by employ- 
ing a parameterized model of the detector response. 

We next summarize the aspects of the accelerator 
and detector that are important for our measurement 
(Sec. III). Then we describe the data selection (Sec. IV) 
and the fast Monte Carlo model (Sec. V). Most parame- 
ters in the model are determined from our data. We de- 
scribe the determination of the various components of the 
Monte Carlo model in Sets. VI-IX. After tuning the mod- 
el we fit the kinematic spectra (Sec. X), perform some 
consistency checks (Sec. XI), and discuss the systemat- 
ic uncertainties (Sec. XII). Section XIII summarizes the 
results and presents the conclusions. 

III. EXPERIMENTAL SETUP 

A. Accelerator 

The Fermilab Tevatron [22] collides proton and an- 
tiproton beams at a center-of-mass energy of fi = 1.8 



TeV. Six bunches each of protons and antiprotons cir- 
culate around the ring in opposite directions. Bunches 
cross at the intersection regions every 3.5 ps. During 
the 1994-1995 running period, the accelerator reached a 
peak luminosity of 2.5 x 1031cm-2s-1 and delivered an 
integrated luminosity of about 100 pb-l. 

The Tevatron tunnel also houses a 150 GeV proton 
synchrotron, called the Main Ring, which is used as an 
injector for the Tevatron. The Main Ring also serves 
to accelerate protons for antiproton production during 
collider operation. Since the Main Ring beampipe passes 
through the outer section of the D0 calorimeter, passing 
proton bunches give rise to backgrounds in the detector. 
We eliminate this background using timing cuts based on 
the accelerator clock signal. 

B. Detector 

1. Overview 

The D0 detector consists of three major subsystems: 
a central detector, a calorimeter (Fig. 5), and a muon 
spectrometer. It is described in detail in Ref. [23]. We 
describe only the features that are most important for 
this measurement. 

FIG. 5. A cutaway view of the DO calorimeter and tracking 
system. 

2. Central Detector 

The central detector is designed to measure the trajec- 
tories of charged particles. It consists of a vertex drift 
chamber, a transition radiation detector, a central drift 
chamber (CDC), and two forward drift chambers (FDC). 
There is no central magnetic field. The CDC covers the 
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region ]q] < 1.0. It is a jet-type drift chamber with delay 
lines to give the hit coordinates in the r-z plane. The 
FDC covers the region 1.4 < In] < 3.0. 

3. Calorimeter 

The calorimeter is the most important part of the de- 
tector for this measurement. It is a sampling calorimeter 
and uses uranium absorber plates and liquid argon as the 
active medium. It is divided into three parts: a central 
calorimeter (CC) and two end calorimeters (EC), each 
housed in its own cryostat. Each is segmented into an 
electromagnetic (EM) section, a fine hadronic (FH) sec- 
tion, and a coarse hadronic (CH) section, with increas- 
ingly coarser sampling. The CC-EM section is construct- 
ed of 32 azimuthal modules. The entire calorimeter is 
divided into about 5000 pseudo-projective towers, each 
covering 0.1x0.1 in 77 x 4. The EM section is segmented 
into four layers, 2, 2, 7, and 10 radiation lengths thick. 
The third layer, in which electromagnetic showers typi- 
cally reach their maximum, is transversely segmented in- 
to cells covering 0.05x0.05 in 7 x 4. The hadronic section 
is segmented into four layers (CC) or five layers (EC). 
The entire calorimeter is 7-9 nuclear interaction lengths 
thick. There are no projective cracks in the calorimeter 
and it provides hermetic and almost uniform coverage 
for particles with 1~1 < 4. Figure 5 shows a view of the 
calorimeter and the central detector. 

The signals from arrays of 2 x 2 calorimeter towers, cov- 
ering 0.2x0.2 in q x 4, are added together electronically 
for the EM section only and for all sections, and shaped 
with a fast rise time for use in the Level 1 trigger. We 
refer to these arrays of 2 x 2 calorimeter towers as “trigger 
towers”. 

Figure 6 shows the pedestal spectrum of a calorimeter 
cell. The spectrum has an asymmetric tail from ioniza- 
tion caused by the intrinsic radioactivity of the uranium 
absorber plates. The data are corrected such that the 
mean pedestal is zero for each cell. To reduce the amount 
of data that have to be stored, the calorimeter readout 
is zero-suppressed. Only cells with a signal that deviates 
from zero by more than twice the rms of the pedestal 
distribution are read out. This region of the pedestal 
spectrum is indicated by the shaded region in Fig. 6. 
Due to its asymmetry, the spectrum does not average to 
zero after zero-suppression. Thus the zero-suppression 
effectively causes a pedestal shift. 

The liquid argon has unit gain and therefore the 
calorimeter response was extremely stable during the en- 
tire run. Figure 7 shows the response of the liquid argon 
as monitored with radioactive sources of LY: and p parti- 
cles. Figures 8 and 9 show the gains and pedestals of a 
typical readout channel throughout the run. 

The EM calorimeter provides a measurement of energy 
and position of the electrons from the W and Z decays. 
Due to the fine segmentation of the third layer, we can 
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ADC counts 

FIG. 6. The pedestal spectrum of a central calorimeter cell, 
where the mean pedestal has been subtracted. The shaded 
region are the events removed by the zero-suppression. 
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FIG. 8. The percentage change in the central calorimeter 
gains over the course of the run. 
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FIG. 9. The change in the central calorimeter pedestals 

over the course of the run. 

FIG. 7. The response of the liquid argon in the central 
calorimeter as monitored by (Y and /3 sources. 



measure the position of the shower centroid with a pre- 
cision of 2.5 mm in the azimuthal direction and 1 cm in 
the z-direction. 

We study the response of the EM calorimeter to elec- 
trons in beam tests [24]. To reconstruct the electron en- 
ergy we add the signals ai observed in each EM layer 
(i = 1.. .4) and the first FH layer (i = 5) of an array of 
5x5 calorimeter towers, centered on the most energetic 
tower, weighted by a layer dependent sampling weight si, 

i=l 

To determine the sampling weights we minimize 

(7) 

where the sum runs over all events and QEM is the reso- 
lution given in Eq. 9. We obtain A = 2.96 MeV/ADC 
count, &M = -347 MeV, si = 1.31, sz = 0.85, s4 = 0.98, 
and sg = 1.84. We arbitrarily fix ss = 1. The value of 
REM depends on the amount of dead material in front of 
the calorimeter. The parameters si to 94 weight the four 
EM layers and sg the first FH layer. Figure 10 shows 
the fractional deviation of E as a function of the beam 
momentum pbeam . Above 10 GeV they deviate by less 
than 0.3% from each other. 

-0.041 , , , , , , ,, / , , , ,, 

10 lo2 

pbeam (GW 
FIG. 10. The fractional deviation of the reconstructed elec- 

tron energy from the beam momentum from beam tests of a 
CC-EM module. 

and noise terms as 

=&M+ (d&)2+(y)2 (9) 
with CEM = 0.003, SEM = 0.135 GeV’12 [25,26], and 
nEM = 0.43 GeV in the central calorimeter. The angle 0 
is the colatitude of the electron. Figure 11 shows the frac- 
tional electron energy resolution versus beam momentum 
for a CC-EM module. The line shows the parametriza- 
tion of the resolution from Eq. 9. 

~,,,I.,.l,,,I,,,I,,,l.,,l,,,l... 
'0 20 40 60 80 100 120 140 1 

FIG. 11. The fractional electron energy resolution mea- 
sured in beam tests of a CC-EM module for the data (0) 
and the parameterization (-). 

4. Luminosity Monitor 

Two arrays of scintillator hodoscopes, mounted in front 
of the EC cryostats, register hits with a 220 ps time reso- 
lution. They serve to detect that an inelastic pp interac- 
tion has taken place. The particles from the breakup of 
the proton give rise to hits in the hodoscopes on one side 
of the detector that are tightly clustered in time. The de- 
tector has a 91% acceptance for inelastic pjj interactions. 
For events with a single interaction the location of the 
interaction vertex can be determined with a resolution of 
3 cm from the time difference between the hits on the two 
sides of the detector for use in the Level 2 trigger. This 
array is also called the Level 0 trigger because the detec- 
tion of an inelastic pis interaction is a basic requirement 
of most trigger conditions. 

The fractional energy resolution can be parameterized 
as a function of electron energy using constant, sampling, 



5. Thgger 

Readout of the detector is controlled by a two-level 
trigger system. 

Level 1 consists of an and-or network, that can be pro- 
grammed to trigger on a pi5 crossing if a number of prese- 
lected conditions are true. The Level 1 trigger decision is 
taken within the 3.5 ps time interval between crossings. 
As an extension to Level 1, a trigger processor (Level 1.5) 
may be invoked to execute simple algorithms on the lim- 
ited information available at the time of a Level 1 accept. 
For electrons, the processor uses the energy deposits in 
each trigger tower as inputs. The detector cannot ac- 
cept any triggers until the Level 1.5 processor completes 
execution and accepts or rejects the event. 

Level 2 of the trigger consists of a farm of 48 VAXsta- 
tion 4000’s. At this level the complete event is available. 
More sophisticated algorithms refine the trigger decisions 
and events are accepted based on preprogrammed condi- 
tions. Events accepted by Level 2 are written to magnetic 
tape for offline reconstruction. 

IV. DATA SELECTION 

A. Trigger 

The conditions required at trigger Level 1 for W and 
Z candidates are: 

l pp interaction: Level 0 hodoscopes register hits con- 
sistent with app interaction. This condition accept- 
s 98.6% of all W and 2 bosons produced. 

l Main Ring Veto: No Main Ring proton bunch pass- 
es through the detector less than 800 ns before or 
after the @ crossing and no protons were injected 
into the Main Ring less than 400 ms before the pjj 
crossing. 

l EM trigger towers: There are one or more EM trig- 
ger towers with E sin 8 > T, where E is the energy 
measured in the tower, 8 its angle with the beam 
measured from the center of the detector, and T a 
programmable threshold. This requirement is fully 
efficient for electrons with pT > 2T. 

The Level 1.5 processor recomputes the transverse elec- 
tron energy by adding the adjacent EM trigger tower with 
the largest signal to the EM trigger tower that exceeded 
the Level 1 threshold. In addition, the signal in the EM 
trigger tower that exceeded the Level 1 threshold must 
constitute at least 85% of the signal registered in this 
tower if the hadronic layers are also included. This EM 
fraction requirement is fully efficient for electron candi- 
dates that pass our offline selection (Sec. IVD). 

Level 2 uses the EM trigger tower that exceeded the 
Level 1 threshold as a starting point. The Level 2 al- 
gorithm finds the most energetic of the four calorimeter 
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towers that make up the trigger tower, and sums the 
energy in the EM sections of a 3x3 array of calorime- 
ter towers around it. It checks the longitudinal shower 
shape by applying cuts on the fraction of the energy in 
the different EM layers. The transverse shower shape 
is characterized by the energy deposition pattern in the 
third EM layer. The difference between the energies in 
concentric regions covering 0.25x0.25 and 0.15x0.15 in 
q x $ must be consistent with an electron. Level 2 also 
imposes an isolation condition requiring 

(10) 

where the sum runs over all cells within a cone of radius 
R = dm = 0.4 around the electron direction 
and pi is the transverse momentum of the electron [27]. 

The pT of the electron computed at Level 2 is based 
on its energy and the z-position of the interaction vertex 
measured by the Level 0 hodoscopes. Level 2 accept- 
s events that have a minimum number of EM clusters 
that satisfy the shape cuts and have pT above a prepro- 
grammed threshold. Figure 12 shows the measured rela- 
tive efficiency of the Level 2 electron filter versus electron 
pT for a Level 2 pT threshold of 20 GeV. We determine 
this efficiency using 2 data taken with a lower threshold 
value (16 GeV). The efficiency is the fraction of electrons 
above a Level 2 pT threshold of 20 GeV. The curve is the 
parameterization used in the fast Monte Carlo. 

0.6 H 

0.4 - 

0.2 - 

1,,,,1,,,,1,,‘,1,‘,,I,,,, 
‘20 25 30 35 40 1 

p,(e) WV) 
FIG. 12. The relative efficiency of the Level 2 electron filter 

for a threshold of 20 GeV. The arrow indicates the cut applied 
in the final event selection. 

Level 2 also computes the missing transverse momen- 
tum based on the energy registered in each calorimeter 
cell and the vertex z-position. We determine the efficien- 
cy curve for a 15 GeV Level 2 $T requirement from data 
taken without the Level 2 $T condition. Figure 13 shows 
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the measured efficiency versus IT. The curve is the 
parameterization used in the fast Monte Carlo. 

‘0 
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FIG. 13. The efficiency of a 15 GeV Level 2 $T require- 
ment. The arrow indicates the cut applied in the final event 
selection. 

B. Reconstruction 

1. Electron 

We identify electrons as clusters of adjacent calorime- 
ter cells with significant energy deposits. Only clusters 
with at least 90% of their energy in the EM section and at 
least 60% of their energy in the most energetic calorime- 
ter tower are considered as electron candidates. For most 
electrons we also reconstruct a track in the CDC or FDC 
that points towards the centroid of the cluster. 

We compute the electron energy E(e) from the signals 
in all cells of the EM layers and the first FH layer in 
a window covering 0.5x0.5 in q x 4 and centered on the 
tower which registered the highest fraction of the electron 
energy. In the computation we use the sampling weights 
and calibration constants determined using the testbeam 
data (Sec. IIIB3) except for the offset &EM, which we 
take from an in situ calibration (Sec. VID), i.e. C~EM = 
-0.16 GeV for electrons in the CC. 

The calorimeter shower centroid position (zcai, y,,i, 
z&i), the center of gravity of the track (ztrk, gtrk, &k) 
and the proton beam trajectory define the electron di- 
rection. The shower centroid algorithm is document- 
ed in Appendix B. The center of gravity of the CDC 
track is defined by the mean hit coordinates of all the 
delay line hits on the track. The calibration of the mea 
sured z-coordinates contributes a significant systematic 
uncertainty to the W boson mass measurement and is 

described in Appendices A and B. Using tracks from 
many events reconstructed in the vertex drift chamber, 
we measure the beam trajectory for every run. The clos- 
est approach to the beam trajectory of the line through 
shower centroid and track center of gravity defines the 
position of the interaction vertex (xvtx, gvtx, zvtX). In 
Z + ee events we may have two electron candidates with 
tracks. In this case we take the point midway between 
the vertex positions determined from each electron as 
the interaction vertex. Using only the electron track to 
determine the position of the interaction vertex, rather 
than all tracks in the event, makes the resolution of this 
measurement less sensitive to the luminosity and avoids 
confusion between vertices in events with more than one 
pjj interaction. 

We then define the azimuth 4(e) and the colatitude 
0(e) of the electron using the vertex and the shower cen- 
troid positions, 

tan f$(e) = ‘Cal - LVvtx , 
Gal - Gtx 

(11) 

tan*(e) = dzP-G- lRz-& 
&al - &tx 

(12) 

Neglecting the electron mass, the momentum of the elec- 
tron is given by 

(13) 

2. Recoil 

We reconstruct the transverse momentum of all par- 
ticles recoiling against the W or 2 boson by taking the 
vector sum 

ZT = xEjsinBi 
i 

where the sum runs over all calorimeter cells that were 
read out, except those that belong to electron clusters. 
Ei are the cell energies, and $i and 8i are the azimuth 
and colatitude of the center of cell i with respect to the 
interaction vertex. 

3. Derived Quantities 

In the case of Z + ee decays we define the dielectron 
momentum 

$(ee> = fi(el> + fle2) (15) 

and the dielectron invariant mass 

m(ee) = 2E(el)E(ez)(l - cosw), (16) 
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where w is the opening angle between the two electron- 
s. It is useful to define a coordinate system in the plane 
transverse to the beam that depends only on the electron 
directions. We follow the conventions first introduced by 
UA2 [lo] and call the axis along the inner bisector of the 
two electrons the q-axis and the axis perpendicular to 
that the J-axis. Projections on these axes are denoted 
with subscripts q or 5. Figure 14 illustrates these defini- 
tions. 

FIG. 14. Illustration of momentum vectors in the trans- 
verse plane for 2 + ee candidates. The vectors drawn with 
thick lines are directly measured. 

In case of W + ev decays we define the transverse 
neutrino momentum 

g(u) = -&(e) - ii~ (17) 

and the transverse mass (Eq. 6). Useful quantities are 
the projection of the transverse recoil momentum on the 
electron direction, 

q = CT ‘fiT(e), (18) 

and the projection on the direction perpendicular to the 
electron direction, 

UI = ii~ . @(e) x 2). (19) 

Figure 15 illustrates these definitions. 

C. Electron Identification 

1. Fiducial Cuts 

To ensure a uniform response we accept only electron 
candidates that are well separated in azimuth (A+) from 
the calorimeter module boundaries in the CC-EM and 

FIG. 15. Illustration of momentum vectors in the trans- 
verse plane for W + eu candidates. The vectors drawn with 
thick lines are directly measured. 

from the edges of the calorimeter by cutting on A4 and 
z,,i. We also remove electrons for which the z-position of 
the track center of gravity is near the edge of the CDC. 
For electrons in the EC-EM we cut on the index of the 
most energetic tower, i,. Tower 15 covers 1.4 < q < 1.5 
with respect to the detector center and tower 25 covers 
2.4 < q < 2.5. 

2. Quality Variables 

We test how well the shape of a cluster agrees with 
that expected for an electromagnetic shower by comput- 
ing a quality variable (x2) for all cell energies using a 
41-dimensional covariance matrix. The covariance ma- 
trix was determined from GEANT [28] based simulations 

w - 
To determine how well a track matches a cluster we ex- 

trapolate the track to the third EM layer in the calorime- 
ter and compute the distance between the extrapolated 
track and the cluster centroid in the azimuthal direction, 
As, and in the z-direction, AZ. The variable 

dk= ($)2+ (g)2, 

quantifies the quality of the match. In the EC-EM z is 
replaced by r, the radial distance from the center of the 
detector. The parameters 6s = 0.25 cm, 6~ = 2.1 cm, 
and 6r = 1.0 cm are the resolutions with which As, AZ, 
and Ar are measured, as determined with the electrons 
from W + ev decays. 

In the EC, electrons must have a matched track in the 
forward drift chamber. In the CC, we define “tight” and 
“loose” criteria. The tight criteria require a matched 



track in the CDC. The loose criteria do not require a 
matched track and help increase the electron finding ef- 
ficiency for Z + ee decays. 

The isolation fraction is defined as 

(21) 

where Econe is the energy in a cone of radius R = 
Jm = 0.4 around the direction of the elec- 
tron, summed over the entire depth of the calorimeter 
and EC,,, is the energy in a cone of R = 0.2, summed 
over the EM calorimeter only. 

TABLE I. Electron selection criteria. 

variable CC (loose) CC (tight) EC (tight) 
fiducial cuts [A+1 > 0.02 [A41 > 0.02 - 

lzcall < 108 cm 1~~~11 < 108 cm 15 5 Ii,1 5 25 
- lztrkl < 80 cm - 

shower shape x2 < 100 x2 < 100 x2 < 100 
isolation fist3 < 0.15 fist3 < 0.15 fiso < 0.15 
track match - ctrk < 5 ctrk < 10 

Figure 16 shows the distributions of the three quality 
variables for electrons in the CC with the arrow showing 
the cut values. Table I summarizes the electron selection 
criteria. 

2:o:i 62 

5:o:o 
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FIG. 16. Distributions of the electron identification vari- 
ables. The arrows indicate the cut values. 
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detector were not operating adequately, they amount to 
an integrated luminosity of about 82 pb-l . We select W 
decay candidates by requiring: 

Level 1: pjj interaction 
Main Ring Veto 
EM trigger tower above 10 GeV 

Level 1.5: 2 1 EM cluster above 15 GeV 
Level 2: electron candidate with pT > 20 GeV 

momentum imbalance & > 15 GeV 
offline: 2 1 tight electron candidate in CC 

pT(e) > 25 GeV 
pi > 25 GeV 
UT < 15 GeV 

We select Z decay candidates by requiring: 
Level 1: pjj interaction 

1 2 EM trigger towers above 7 GeV 
Level 1.5: 1 1 EM cluster above 10 GeV 
Level 2: > 2 electron candidates with pT > 20 GeV 
offline: 2 2 electron candidates 

pT(e) > 25 GeV 
70 < m(ee) < 110 GeV 

We accept Z + ee decays with at least one electron can- 
didate in the CC and the other in the CC or the EC. 
One CC candidate must pass the tight electron selec- 
tion criteria. If the other candidate is also in the CC 
it may pass only the loose criteria. We use the 2,179 
events with both electrons in the CC (CC/CC 2 sam- 
ple) to calibrate the calorimeter response to electrons 
(Sec. VI). These events need not pass the Main Ring 
Veto cut because Main Ring background does not affect 
the EM calorimeter. The 2,341 events for which both 
electrons have tracks and which pass the Main Ring Ve- 
to (CC/CC+EC 2 sample) serve to calibrate the recoil 
momentum response (Sec. VII). Table II summarizes the 
data samples. 

TABLE II. Number of W and 2 candidate events. 

channel 2 + ee W -b eu 
fiducial region of electrons CC/CC CC/CC CC/EC CC 
e quality (t=tight, l=loose) t/1 t/t t/t t 
pass Main Ring Veto 537 1225 1116 28323 
fail Main Ring Veto 107 310 268 - 

Figure 17 shows the luminosity of the colliding beams 
during the W and Z data collection. 

On several occasions we use a sample of 295,000 ran- 
dom pjj interaction events for calibration purposes. We 
collected these data concurrently with the W and 2 sig- 
nal data, requiring only a pjj interaction at Level 1. We 
refer to these data as LLminimum bias events”. 

D. Data Samples 

The data were taken during the 1994-1995 Tevatron 
run. After the removal of runs in which parts of the 
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FIG. 17. The luminosity distribution of the W (-) and 
the 2 (0) samples. 

V. FAST MONTE CARLO MODEL 

A. Overview 

The fast Monte Carlo model consists of three parts. 
First we simulate the production of the W or 2 boson by 
generating the boson four-momentum and other charac- 
teristics of the event like the z-position of the interaction 
vertex and the luminosity. The event luminosity is re- 
quired for luminosity dependent parametrizations in the 
detector simulation. Then we simulate the decay of the 
boson. At this point we know the true pT of the boson 
and the momenta of its decay products. We then apply 
a parameterized detector model to these momenta in or- 
der to simulate the observed transverse recoil momentum 
and the observed electron momenta. 

B. Vector Boson Production 

In order to specify completely the production dynam- 
ics of vector bosons in pjj collisions we need to know the 
differential production cross section in mass Q, rapidi- 
ty y, and transverse momentum qT of the produced W 
bosons. To speed up the event generation, we factorize 
this into 

d3a d2a du 

dq$dudQ 
M- 

d&b QZ =M& “;iQ (22) 

to generate qT, y, and Q of the bosons. 
For fl collisions, the vector boson production cross 

section is given by the parton cross section Zi,j convolut- 
ed with the parton distribution functions f(z,Q2) and 
summed over parton flavors i, j: 
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dx2fi(xl, Q2)fj(x2, Q2) 

Several authors [30,31] have computed & ( us- 
q!r tJ QZ-M$ 

_ 

ing a perturbative calculation [32] for the high-qT regime 
and the Collins-Soper resummation formalism [33,34] for 
the low-qT regime. We use the code provided by the 
authors of Ref. [30] and the MRSA’ parton distribution 
functions [35] to compute the cross section. We evalu- 
ate Eq. 23 separately for interactions involving at least 
one valence quark and for interactions involving two sea 
quarks. 

The parton cross section is given by 

d2Z 50 

dq+dy = G {J d2beih.g. F(b) x e-s + y 
’ (24) 

where go is the tree-level cross section, B is the parton 
center-of-mass energy, and b is the impact parameter in 
transverse momentum space. F and Y are perturbative 
terms and S parameterizes the non-perturbative physics. 
In the notation of Ref. [30] 

S= [gi +g2ln ($--)I b2 +gigs1n(100~iz2)b(25) 

where Qo is a cut-off parameter, xi and 22 are the mo- 
mentum fractions of the initial state partons. The param- 
eters gi , gs, and gs have to be determined experimentally 
(Sec. VIII). 

We use a Breit-Wigner curve with mass dependent 
width for the line shape of the W boson. The intrin- 
sic width of the W is l?w = 2.062 f 0.059 GeV [36]. The 
line shape is skewed due to the momentum distribution 
of the quarks inside the proton and antiproton. The mass 
spectrum is given by 

$ = &j(Q) Q2 
(Q2-M$)2+~' 

(2’3) 

We call 

G,(Q) = $ c /- ’ ‘.fi(x, Q2)fj(Q2/sx, Q2) (27) 
i,j Q2/8 x 

the parton luminosity. To evaluate it we generate W + 
ev events using the HERWIG Monte Carlo event generator 
[37], interfaced with PDFLIB [38], and select the events 
subject to the same kinematic and fiducial cuts as for 
the W and 2 samples with all electrons in CC. We plot 
the mass spectrum divided by the intrinsic line shape of 
the W boson. The result is proportional to the parton 
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luminosity and we parameterize the spectrum with the 
function [ 121 

Table III shows p for W and 2 events for some modern 
parton distribution functions. The value of p depend- 
s on the rapidity distribution of the W bosons, which 
is restricted by the kinematic and fiducial cuts that we 
impose on the decay leptons. The values of ,B given in 
Table III are for the rapidity distributions of W and 2 
bosons that satisfy the kinematic and fiducial cuts giv- 
en in Sec. IV. The uncertainty in p is about 0.001, due 
to Monte Carlo statistics and uncertainties in the accep- 
tance. 

direction of the incoming antiquark. Most of the time 
the quark comes from the proton and the antiquark from 
the antiproton, so that X = -1. Only if both quark and 
antiquark come from the sea of the proton and antiproton 
is there a 50% chance that the quark comes from the 
antiproton and the antiquark from the proton and in that 
case X = 1 (Fig. 18). We determine the fraction of sea- 
sea interactions, fSs, using the parameterizations of the 
parton distribution functions given in PDFLIB [38]. 

TABLE III. P&on luminosity slope /!J and fraction of 
sea-sea interactions fs. in the W and Z production model. 
The p value is given for W + eu decays with the electron in 
CC and for 2 + ee decays with both electrons in CC. 

Z production W production 
/3 (GeV-l) P (GeV-‘) fs8 

MRSA’ [35] 3.6 x 10-j 8.6 x 10-j 0.207 
CTEQ3M [42] 3.3 x 10-s 8.7 x 1O-3 0.203 
CTEQSM [43] - 8.8 x 10-s 0.203 
MRSD-’ [44] 3.8 x 1O-3 9.6 x 1O-3 0.201 

FIG. 18. Polarization of the W produced in pj5 collisions if 
the quark comes from the proton (left) and if the antiquark 
comes from the proton (right). The thick arrows indicate the 
orientation of the particle spins. 

When C3(a,) processes are included, the boson acquires 
finite pi and Eq. 29 is changed to [39] 

do 
d cos dcs fx (1 +~l(QT)cos&s +~2(QT)c0~2~CS) 

(30) 

To generate the boson four-momenta we treat da/d& 
and d a/dqgdy as probability density functions and pick 
Q from the former and a pair of 21 and qT values from 
the latter. For a fraction fSs we use d2a/dq$dy for inter- 
actions between two sea quarks. Their helicity is +l or 
-1 with equal probability. For the remaining W bosons 
we use d2a/dq$dy for interactions involving at least one 
valence quark. They always have helicity -1. Finally, 
we pick the z-position of the interaction vertex from a 
Gaussian distribution centered at z = 0 with a standard 
deviation of 25 cm and a luminosity for each event from 
the histogram in Fig. 17. 

C. Vector Boson Decay 

At lowest order the W boson is fully polarized a- 
long the beam direction due to the V-A coupling of the 
charged current. The resulting angular distribution of 
the charged lepton in the W rest frame is given by 

do 
d cos 0” 

cc (1 - xqcose*)“, 

where X is the helicity of the W with respect to the proton 
direction, q is the charge of the lepton, and 0’ is the angle 
between the charged lepton and proton beam directions 
in the W rest frame. The spin of the W points along the 

for W+ bosons with X = -1 and after integration over 
4. The angle 19~s in Eq. 30 is now defined in the Collins- 
Soper frame [40]. The values of cri and as as a function 
of transverse boson momentum have been calculated at 
O(az) [39] and are shown in Fig. 19. We have imple- 
mented the angular distribution given in Eq. 30 in the 
fast Monte Carlo. The effect is smaller if the W bosons 
are selected with UT < 15 GeV than for UT < 30 GeV. 
The angular distribution of the leptons from 2 -+ ee de- 
cays is also generated according to Eq. 30, but with ~1 
and crz computed for 2 + ee decays [39]. 

To check whether neglecting the correlations between 
the mass and the other parameters in Eq. 22 introduces 
an uncertainty, we use the HERWIG program to generate 
W + eu decays including the correlations neglected in 
our model. We apply our parameterized detector model 
to them and fit them with probability density functions 
that were generated without the correlations. The fitted 
W mass values agree with the W mass used in the Monte 
Carlo generation within the statistical uncertainties of 25 
MeV. 

Radiation from the decay electron or the W boson bi- 
ases the mass measurement. If the decay electron radi- 
ates a photon and the photon is well enough separated 
from the electron so that its energy is not included in 
the electron energy, or if an on-shell W boson radiates 
a photon and therefore is off-shell when it decays, the 
measured mass is biased low. We use the calculation of 
Ref. [41] to generate W + evy decays. The calculation 
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mismeasurement of the transverse mass. 

qT WV) 

FIG. 19. The calculations of ai and cxs(- - -) as a 
function of the transverse momentum of the W boson. 

gives the fraction of events in which a photon with energy 
E(r) > Es is radiated, and the angular distribution and 
energy spectrum of the photons. Only radiation from the 
decay electron and the W boson, if the final state W is 
off-shell, is included to order (Y. Radiation by the initial 
quarks or the W, if the final W is on-shell, does not affect 
the mass of the ev pair from the W decay. We use a min- 
imum photon energy Eo = 50 MeV, which means that in 
30.6% of all W decays a photon with E(y) > 50 MeV 
is radiated. Most of these photons are emitted close to 
the electron direction and cannot be separated from the 
electron in the calorimeter. For 2 + ee decays there is 
a 66% probability that any one of the electrons radiates 
a photon with E(y) > 50 MeV. 

The separation of the electron and photon in the lab 
frame is 

AR&d = J(d+> - 4drN2 + Me) - &d>2a 
(31) 

Figure 20 shows the calculated distribution of photon- 
s as a function of AR(ey). The shaded histogram in 
the figure shows the photons that are reconstructed as 
separate objects. If the photon and electron are close to- 
gether they cannot be separated in the calorimeter. The 
momentum of a photon with AR(ey) < Rc is therefore 
added to the electron momentum, while for AR(ey) 2 Ro 
a photon is considered separated from the electron and 
its momentum is added to the recoil momentum. We use 
Ro = 0.3, which is the approximate size of the window in 
which the electron energy is measured. This procedure 
has been verified to give the same results as an explicit 
GEANT simulation of radiative W decays. In only about 
3.5% of the W + ev decays does the photon separate far 
enough from the electron, i.e. AR(er) > Re, to cause a 

1 
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FIG. 20. The distribution of AR(ey) of photons from 
W + evy decays that are reconstructed as separate objects 
(shaded) and those that are not, either because they are too 
close to the electron or too low in energy (-). 

W boson decays through the channel W + TV + euTv 
are topologically indistinguishable from W + eu de- 
cays. We therefore include these decays in the W de- 
cay model, properly accounting for the polarization of 
the tau leptons in the decay angular distributions. The 
fraction of W bosons that decay in this way is B(r + 
evV)/ (1 + B(T + evv)) = 0.151. 

We let the generated W bosons decay with an angular 
distribution corresponding to their helicity. For 15.1% of 
the W bosons the decay is to TY + euDu. For 30.6% 
of the remaining W bosons a photon is radiated. For 
66% of the Z bosons the decay is to e+e-y and for the 
remainder to e+e-. 

D. Detector Model 

The detector simulation uses a parameterized model 
for response and resolution to obtain a prediction for the 
distribution of the observed electron and recoil momenta. 

When simulating the detector response to an electron 
of energy Es, we compute the observed electron energy 
as 

E(e) = C~EM& + AE(L, ~11) + (TEM . X, (32) 

where REM is the response of the electromagnetic 
calorimeter, AE is the energy due to particles from the 
underlying event within the electron window (parameter- 
ized as a function of luminosity L and ull), (TEM is the 
energy resolution of the electromagnetic calorimeter, and 



X is a random variable from a normal parent distribution 
with zero mean and unit width. 

The transverse energy measurement depends on the 
measurement of the electron direction as well. We de- 
termine the shower centroid position by intersecting the 
line defined by the event vertex and the electron direction 
with a cylinder coaxial with the beam and 91.6 cm in ra- 
dius (the radial center of the EM3 layer). We then smear 
the azimuthal and z-coordinates of the intersection point 
by their resolutions. We determine the z-coordinate of 
the center of gravity of the CDC track by intersecting the 
same line with a cylinder of 62 cm radius, the mean radi- 
al position of all delay lines in the CDC, and smearing by 
the resolution. The measured angles are then obtained 
from the smeared points as described in Section IV B 1. 

The model for the particles recoiling against the W 
has two components: a “hard” component that models 
the pi of the W, and a “soft” component that models 
detector noise and pile-up. Pile-up refers to the effect- 
s of additional pp interactions in the same or previous 
beam crossings. For the soft component we use the trans- 
verse momentum balance #r from a minimum bias event 
recorded in the detector. The observed recoil pT is then 
given by 

aT = - (he&T + grec . X) GT 

--Au,, (4 Q?I-(4 

+%nbgT, 

(33) 

where QT is the generated value of the boson transverse 
momentum, R,,, is the (in general momentum dependen- 
t) response, ore, is the resolution of the calorimeter, Azlll 
is the transverse energy flow into the electron window 
(parameterized as a function of luminosity L and u/l), 
and a,&, is a correction factor that allows us to adjust 
the resolution to the data. The quantity A~11 is different 
from the energy added to the electron, AE, because of 
the zero-suppression in the calorimeter readout. 

We simulate selection biases due to the trigger require- 
ments and the electron isolation by accepting events with 
the estimated efficiencies. Finally, we compute all the de- 
rived quantities from these observables and apply fiducial 
and kinematic cuts. 

VI. ELECTRON MEASUREMENT 

A. Angular Resolutions 

The resolution for the z-coordinate of the track center 
of gravity, ztrk, is determined from the Z + ee sample. 
Both electrons originate from the same interaction ver- 
tex and therefore the difference between the interaction 
vertices reconstructed from the two electrons separately, 
zvt,(er) - zvtx(e2), is a measure of the resolution with 
which the electrons point back to the vertex. The points 
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in Fig. 21 show the distribution of z,t,(er) - zvtx(e2) ob- 
served in the CC/CC 2 sample with tracks required for 
both electrons. 

zv&, >-zva(e2> (cm) 
FIG. 21. The distribution of z”t,(ei) - Zvtx(ez) for the 

2 + ee sample (0) and the fast Monte Carlo simula- 
tion (-). 

A Monte Carlo study based on single electrons gener- 
ated with a GEANT simulation shows that the resolution 
of the shower centroid algorithm can be parameterized 
as 

I = (a + bX(e)) + (c + dMe)h, (34) 

where x(e) = 18(e) - 90”1, a = 0.33 cm, b = 5.2 x 10m3 
cm, c = 4.2 x 10m4, and d = 7.5 x 10m5. We then tune 
the resolution function for Ztrk in the fast Monte Carlo 
so that it reproduces the shape of the zvtX(er) - zvtX(ez) 
distribution observed in the data. We find that a reso- 
lution function consisting of two Gaussians 0.31 cm and 
1.56 cm wide, with 6% of the area under the wider Gaus- 
sian, fits the data well. The histogram in Fig. 21 shows 
the Monte Carlo prediction for the best fit, normalized 
to the same number of events as the data. The W mass 
measurement is very insensitive to these resolutions. The 
uncertainties in the resolution parameters cause less than 
5 MeV uncertainty in the fitted W mass. 

The calibration of the z-position measurements from 
the CDC and calorimeter is described in Appendix A. 
We quantify the calibration uncertainty in terms of scale 
factors oCoC = 0.988 f 0.001 and act = 0.9980 f 0.0005 
for the z-coordinate. The uncertainties in these scale 
factors lead to a finite uncertainty in the W mass mea- 
surement . 
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B. Underlying Event Energy 

The energy in an array of 5x5 towers in the four EM 
layers and the first FH layer around the most energetic 
tower of an electron cluster is assigned to the electron. 
This array contains the entire energy deposited by the 
electron shower plus some energy from other particles. 
The energy in the window is excluded from the compu- 
tation of ‘&. This causes a bias in ~11, the component of 
?iT along the direction of the electron. For PT(W) << Mw 

mT f3 %T(e) + UII, (35) 

so that this bias propagates directly into a bias in the 
transverse mass. We call this bias AUII. It is equal to 
the momentum flow observed in the EM and first FH 
sections of a 5x5 array of calorimeter towers. 

We use the W and 2 data samples to measure A~ll. 
For every electron in the W and 2 samples we compute 
the energy flow into an azimuthal ring of calorimeter tow- 
ers, 5 towers wide in 7 and centered on the tower with 
the largest fraction of the electron energy. For every elec- 
tron we plot the transverse energy flow into one-tower- 
wide azimuthal segments of this ring as a function of the 
azimuthal separation IA41 between the center of the seg- 
ment and the electron shower centroid. The energy flow 
C Eix5 is computed as the sum of all energy deposits in 
the four EM layers and the first FH layer in the 1 x5 tow- 
er segment. Figure 22 shows the transverse energy flow 
C Elx5/ coshq(e) versus IA41 for the electrons in the W 
sample with UT < 15 GeV. For small /A$[ we see the 
substantial energy flow from the electron shower and for 
larger IA+/ the constant noise level. The electron shower 
is contained in a window of IA41 < 0.2. We estimate the 
energy flow into the 5x5 tower window around the elec- 
tron from the energy flow into segments of the azimuthal 
ring with IA41 > 0.2. The level of energy flow is sensitive 
to the isolation cut. The region 0.2 < IA41 c 0.4, which 
is used for the isolation variable, is maximally biased by 
the cut; the region, 0.4 < lAdI < 0.6, which is close to 
the electron but outside the isolation region, is minimally 
biased. We expect the energy flow under the electron to 
lie somewhere in between the energy flow into these two 
regions. We therefore compute Au11 based on the aver- 
age transverse energy flow into both regions and assign a 
systematic error equal to half the difference between the 
two regions. We repeat the same analysis for the elec- 
trons in the CC/CC 2 sample. The results are tabulated 
in Table IV. We find Au11 = 479 f 2(stat) f G(syst) MeV 
for W events with UT < 15 GeV. For the 2 sample AU/I 
is 11 f 7 MeV lower. Figure 23 shows the spectrum of 
A9 * 

At higher luminosity the average number of interac- 
tions per event increases and therefore Au11 increases. 
This is shown in Fig. 24. The mean value of Au11 in- 
creases by 11.2 MeV per 1030cm-2s-1. The underlying 
event energy flow into the electron window also depends 
on ull. Figure 25 shows (Au11 (0, ull)), the mean value for 
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FIG. 22. The transverse energy Aow into 1x5 tower seg- 
ments as a function of azimuthal separation from the electron 
in the W sample. 
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FIG. 23. The distribution of A~11 in the W signal sample. 



TABLE IV. Au11 for the W and 2 event samples. 
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C. ~11 Efficiency 

Event Sample c EIX~/ coshq(e) (MeV) AU,, (MeV) 
W 95.8f0.4 479f2f6 
z 93.6f1.3 468f7f6 

Au11 corrected back to zero luminosity, as a function of 
~11. In the fast Monte Carlo model a value Azlll is picked 
from the distribution shown in Fig. 23 for every event 
and then corrected for UII and luminosity dependences. 

v 033 ’ 0 2 4 6 8 10 12 14 16 18 20 
luminosity ( 1030cm-2s-‘) 

FIG. 24. The luminosity dependence of (AU\,). 
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FIG. 25. The variation of (AU,,) as a function of q. The 

region between the arrows is populated by the W sample. 

The measured electron energy is biased upwards by the 
additional energy AE in the window from the underly- 
ing event. AE is not equal to Au11 because the additional 
energy deposited by the electron may lift some cells that 
would have been zero-suppressed in the calorimeter read- 
out above the zerosuppression threshold. Therefore 

AE = Azlll - Aped (36) 

where Aped = 212 f 25 MeV is a correction for the 
pedestal shift introduced by the zero-suppression in the 
calorimeter readout. This is determined by superimpos- 
ing single electrons simulated with a GEANT simulation 
on minimum bias events that were recorded without zero- 
suppression in the calorimeter readout. Most of this bias 
cancels in the W to 2 mass ratio so that the W mass 
measurement is not sensitive to Aped. 

The efficiency for electron identification depends on 
their environment. Well-isolated electrons are identified 
correctly more often than electrons near other particles. 
Therefore W decays in which the electron is emitted in 
the same direction as the particles recoiling against the 
W are selected less often than W decays in which the 
electron is emitted in the direction opposite the recoiling 
particles. This causes a bias in the lepton pi distribu- 
tions, shifting pT(e) to larger values and PT(V) to lower 
values, whereas the mu distribution is only slightly af- 
fected. 

We estimate the electron finding efficiency as a func- 
tion of ~11 by superimposing Monte Carlo electrons, sim- 
ulated using the GEANT program, onto the events from 
our W signal sample. We use the W sample in order 
to ensure that the underlying event is correctly modeled. 
The sample of superimposed electrons, which are spa- 
tially separated from the electron that is already in the 
event, matches the data well. It is important that the 
superimposed sample model the transverse shower shape 
and isolation well, because these are the dominant effect- 
s that cause the efficiency to vary with ~11. Figure 26 
shows the transverse shower profile of the superimposed 
electron sample and the electron sample from W decays. 
Figure 27 shows the distribution of the isolation for the 
two electron samples in five ‘1~11 regions. Figure 28 com- 
pares the mean isolation versus ~11 for the two samples. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIG. 26. The transverse energy flow into 1x5 tower seg- 
ments as a function of the azimuthal separation from the 
electron for the electrons from W + eu decays (0) and the 
superimposed Monte Carlo electron sample (-). 

We then apply the shower shape and isolation cuts used 
to select the W signal sample and determine the fraction 
of the electrons in the superimposed samples that pass 
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FIG. 27. The isolation spectrum for five different ~11 re- 
gions, ~11 < -15, -15 < ‘1~11 < -5, -5 < 2111 < 5, 5 < u11 < 15, 
~11 > 15 GeV (from top to bottom), for the electrons from 
W + ev decays (0) and the superimposed electron sample 
(shaded). 
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FIG. 28. The mean isolation versus q for the W electron 
sample (0) and the superimposed Monte Carlo electron sam- 
ple (0). 

all requirements aa a function of ~11. This efficiency is 
shown in Fig. 29. The line is a fit to a function of the 
form 

‘(“II) = Co 
for ~11 < uc 

: - ~(~11 - ~0) otherwise. 
(37) 

The parameter EO is an overall efficiency which is inconse- 
quential for the W mass measurement, ~0 is the value of 
~11 at which the efficiency starts to decrease as a function 
of ‘1~11, and s is the rate of decrease. We obtain the best fit 
for ‘1~0 = 3.85 f 0.55 GeV and s = 0.013 f 0.001 GeV-l. 
These two values are strongly correlated. The errors ac- 
count for the finite number of superimposed Monte Carlo 
electrons. 
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FIG. 29. The electron selection efficiency as a function of 
91 * 

D. Electron Energy Response 

Equation 7 relates the reconstructed electron energy 
to the recorded calorimeter signals. Since the values 
for the constants were determined in a different setup, 
we determine the offset &M and a scale (YEM, which es- 
sentially modifies A, in situ with collider data for reso- 
nances that decay to electromagnetically showering par- 
ticles: no + yy, J/ll, + e+e-, and 2 + ee. We use r” 
and J/q signals from an integrated luminosity of approx- 
imately 150 nb-‘, accumulated during dedicated runs 
with low pT thresholds for EM clusters in the trigger. 

The fast Monte Carlo predicts the reconstructed elec- 
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tron energy 

5 

E(e) = CQMEO = AC S~CZ~ - &M (38) 
i=l 

where EO is the generated electron energy. To determine 
&EM and REM, we compare the observed resonances and 
Monte Carlo predictions as a function of Q~EM and &M. 

The photons from the decay of r”s with pi > 1 GeV 
cannot be separated in the calorimeter. There is about 
a 10% probability for each photon to convert to an e+e- 
pair in the material in front of the CDC. If both photons 
convert we can identify no decays as EM clusters in the 
calorimeter with two doubly-ionizing tracks in the CDC. 
We measure the 7~~ energy E(n”) in the calorimeter and 
the opening angle w between the two photons using the 
two tracks. This allows us to compute the “symmetric 
mass” 

msym = E(*O).Jl - yw, 

which is equal to the invariant mass if both photons have 
the same energy, and is larger for asymmetric decays. 
Figure 30 shows the background subtracted spectrum of 
msym for x0 candidates in the CC-EM superimposed with 
a Monte Carlo prediction of the line shape. 

WI t I 

1 I, 
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0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

msym GeV) 

FIG. 30. The background-subtracted msym distribution. 
The superimposed curve shows the Monte Carlo simulation. 

Figure 31 shows the invariant mass spectrum of dielec- 
tron pairs in the J/$ mass region. The smooth curve is 
the fit to a Gaussian line shape above the background 
predicted using a sample of EM clusters without CDC 
tracks. After correction for underlying event effects we 
meaeure a mass of 3.03 f O.O4(stat)f O.lS(syst) GeV. A 
Monte Carlo simulation of J@ + bb + X, b + J/q + X 

tells us that we expect to observe a mass 

mobs = aEMm J/q + 0.56 &M. (40) 

Together with our measurement of mobs, this restricts 
the allowed parameter space for QEM and &M. The r” 
and J/lc, analyses are described in detail in Ref. [12]. 
Figure 34 shows the 68% confidence level contours in CYEM 
and SEM obtained from these data. 
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FIG. 31. The dielectron invariant mass spectrum for the 

J/$ + ee sample (histogram) and the background sample 
(0). The smooth curve is a fit to the data. 

Fixing the observed 2 boson mass to the measured val- 
ue (Eq. 3) correlates the values allowed for CQM and &M. 
For a given BEM we determine REM so that the position of 
the 2 peak predicted by the fast Monte Carlo agrees with 
the data. To determine the scale factor that best fits the 
data, we perform a maximum likelihood fit to the m(ee) 
spectrum between 70 GeV and 110 GeV. In the resolution 
function we allow for an exponential background shape 
whose slope is fixed to -0.037 f 0.002 GeV-l, the value 
obtained from a sample of events with two EM clusters 
that fail the electron quality cuts (Fig. 32). The back- 
ground normalization is allowed to float in the fit. This 
is sufficient, together with the 7~~ and J/q data, to de- 
termine both (YEM and &M. 

Without relying on the low energy data at all we can 
extract QEM and REM from the 2 data alone. The elec- 
trons from 2 decays are not monochromatic and there- 
fore we can make use of their energy spread to constrain 
(YEM and &M simultaneously. For &M < E(ei) + E(ez) 
we can write 

m(ee> = ~EMM.Z + ~&EM , (41) 

where fz = (E(ei)+E(es))(l-cosw)/m(ee) and w is the 
opening angle between the two electrons. We plot m(ee) 
versus fz (Fig. 33) and compare it with the Monte Carlo 
predictions for the allowed values of (YEM and SEM using 
a binned maximum likelihood fit. 
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FIG. 32. The dielectron mass spectrum for the background 
data sample to the CC/CC 2 sample. The fit is an exponen- 
tial. 

! 

Using the constraints on CXEM and SAM from the 2 data 
alone we obtain the contour labeled “2” in Fig. 34 and 
SEM = 0.02 f 0.36 GeV. The uncertainty in this measure- 
ment of &M is dominated by the statistical uncertainty 
due to the finite size of the 2 sample. 

The combined constraint from all three resonances is 
shown by the thick contour in Fig. 34. The x0 and J/q 
contours essentially fix ITEM, independent of (YEM. The re- 
quirement that the Z peak position agree with the known 
2 boson mass correlates REM and REM. The contours in 
Fig. 34 reflect only statistical uncertainties. The uncer- 
tainty in the r” and J/ll, contours is dominated by sys- 
tematic effects in the underlying event corrections and 
the deviation of the test beam data from the assumed 
response at low energies. The double arrow in Fig. 34 
represents the systematic uncertainty in &M. We deter- 

FIG. 33. The distribution of m(ee) versus fz for the C- 
C-CC 2 + ee sample. 
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FIG. 34. The 68% confidence level contours in REM and 
REM from the J/$, r", and Z data. The inset shows an ex- 
panded view of the region where the x2 is minimized. 

Figure 35 shows the m(ee) spectrum for the CC/CC 
2 sample and the Monte Carlo spectrum that best fits 
the data for &EM = -0.16 GeV. The x2 for the best fit 
to the CC/CC m(ee) spectrum is 33.5 for 39 degrees of 
freedom. For 

QEM = 0.9533f0.0008 (43) 

the Z peak position is consistent with the known Z boson 
mass. The error reflects the statistical uncertainty and 
the uncertainty in the background normalization. The 
background slope has no measurable effect on the result. 

If we split the CC/CC 2 sample into events with two 
tight electrons and events with a tight and a loose elec- 
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FIG. 35. The dielectron mass spectrum from the CC-CC 
2 sample. The superimposed curve shows the maximum like- 
lihood fit and the shaded region the fitted background. 

tron and fit them separately using the value of CYEM given 
in Eq. 43 we obtain 

MZ = 91.206 f 0.086 GeV (tight/tight sample); (44) 
MZ = 91.145 f 0.148 GeV (tight/loose sample). (45) 

Figures 36 (a) and (b) h s ow the corresponding spectra 
and fits. 
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FIG. 36. The dielectron mass spectra from (a) the 
tight/tight and (b) the tight/loose CC-CC 2 samples. The 
curves show the fitted Monte Carlo spectra. 

E. Electron Energy Resolution 

Equation 9 gives the functional form of the electron 
energy resolution. We take the intrinsic resolution of 
the calorimeter, which is given by the sampling term 
SEM, from the test beam measurements. The noise term 
nEM is represented by the width of the AE distribution 

(Fig. 23). We measure the constant term CEM from the 
Z line shape of the data. We iit a Breit-Wigner con- 
voluted with a Gaussian, whose width characterizes the 
dielectron mass resolution, to the 2 peak. Figure 37 
shows the width umcee. of the Gaussian fitted to the Z 
peak predicted by the fast Monte Carlo as a function of 
CEM. The horizontal lines indicate the width of the Gaus- 
sian fitted to the CC/CC 2 sample and its uncertainties, 
1.75 f 0.08 GeV. We find that Monte Carlo and data a- 
gree if CEM = O.O115+0,:$i4~, as indicated by the arrows 
in Fig. 37. The measured 2 mass does not depend on 
CEM . 
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FIG. 37. The dielectron mass resolution versus the con- 

stant term CEM. 

VII. RECOIL MEASUREMENT 

A. Recoil Momentum Response 

The detector response and resolution for particles re- 
coiling against a W boson should be the same as for par- 
ticles recoiling against a 2 boson. For 2 + ee events, 
we can measure the transverse momentum of the 2 from 
the e+e- pair, pT(ee), into which it decays and from the 
recoil momentum UT in the same way as for W + ey 
events. By comparing pT(ee) and ‘1LT we calibrate the 
recoil response relative to the electron response. 

The recoil momentum is carried by many particles, 
mostly hadrons, with a wide momentum spectrum. Since 
the response of calorimeters to hadrons tends to be non- 
linear and the recoil particles are distributed all over the 
calorimeter, including module boundaries with reduced 
response, we expect a momentum dependent response 
function with values below unity. In order to fix the func- 
tional form of the recoil momentum response, we study 



the response predicted by a Monte Carlo 2 + ee sample 
obtained using the HERWIG program and a GEANT-based 
detector simulation. We project the reconstructed trans- 
verse recoil momentum onto the direction of motion of 
the Z and define the response as 

(46) 

where QT is the generated transverse momentum of the 
2 boson. Figure 38 shows this response as a function of 
QT. A response function of the form 

Rrec = ~lrec + ,&c 1% (qT/GeV) (47) 

fits the response predicted by GEANT with crrec = 0.713f 
0.006 and /3rec = 0.046 f 0.002. This functional form also 
describes the jet energy response of the DO calorimeter. 
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FIG. 38. The recoil momentum response in the Monte Car- 

lo 2 sample aS a function of qT. 

To measure the recoil response from the collider data 
we use the CC/CC+EC 2 sample. We allow one of the 
leptons from the 2 + ee decay to be in the CC or the 
EC, so that the rapidity distribution of the 2 bosons 
approximates that of the W bosons. We require both 
leptons to satisfy the tight electron criteria. This reduces 
the background for the topology with one lepton in the 
EC. We also require the Main Ring Veto as for the W 
sample (Sec. IV). 

We project the transverse momenta of the recoil, UT, 
and the 2 as measured by the two electrons, pT(ee), on 
the inner bisector of the electron directions (v-axis), as 
shown in Fig. 14. By projecting the momenta on an ax- 
is that is independent of any energy measurement, noise 
contributions to the momenta average to zero and do not 
bias the result. We bin the data in p,(ee) and plot the 
mean of the sum of the two projections, u,, + p,(ee), 
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versus the mean of p,(ee) (Fig. 39). We perform a two- 
dimensional x2 fit for the two parameters by comparing 
the data to predictions of the fast Monte Carlo for d- 
ifferent values of arec and &. Figure 39 also shows 
the prediction of the Monte Carlo for the values of the 
parameters that give the best fit. Figure 40 shows the 
contour for x 2=xg+1. Thebestfit(x$=5for8de- 
grees of freedom) is achieved for orec = 0.693 f 0.060 and 
/$,, = 0.040 f 0.021. The two parameters are strongly 
correlated with a correlation coefficient p = -0.979. 
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FIG. 39. The average p,(ee) + u,, versus p,(ee) for the 2 
data (0) and the fast Monte Carlo simulation (0) . 
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FIG. 40. The xi + 1 contour for the recoil momentum re- 
sponse parameters. 
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B. Recoil Momentum Resolution 

We parameterize the resolution for the hard compo- 
nent of the recoil as 

urec = %x&E (48) 

where srec is a tunable parameter. 
The soft component of the recoil is modeled by the 

transverse momentum balance $T from minimum bias 
events, multiplied by a correction factor f&b (Eq. 33). 
This automatically models the effects of detector reso- 
lution and pile-up. To model the pile-up correctly as 
a function of luminosity, we need to take the minimum 
bias events at the same luminosity as the W events. At 
a given luminosity the mean number of interactions in 
minimum bias events is always smaller than the mean 
number of interactions in W events. To model the detec- 
tor resolution correctly, the minimum bias events must 
have the same interaction multiplicity spectrum as the 
W events. We therefore weight the minimum bias events 
so that their interaction multiplicity approximates that 
of the W events. As a measure of the interaction multi- 
plicity on an event-by-event basis, we use the multiplicity 
of vertices reconstructed from the tracks in the CDC and 
the timing structure of the Level 0 hodoscope signals [45]. 

We tune the two parameters srec and o& using the C- 
C/CC+EC 2 sample. The width of the spectrum of the 
q-balance, us/Rrec + p,(ee), is a measure of the recoil 
momentum resolution. Figure 41 shows this width r~,, as 
a function of p,(ee). The contribution of the electron 
momentum resolution to the width of the r,+balance is 
negligibly small. The contribution of the recoil momen- 
tum resolution grows with p,(ee) while the contribution 
from the minimum bias $T is independent of p, (ee). This 
allows us to determine srec and o’mb simultaneously and 
without sensitivity to the electron resolution by compar- 
ing the width of the q-balance predicted by the Monte 
Carlo model with that observed in the data in bins of 
p,(ee). We perform a x2 fit comparing Monte Carlo and 
collider data. Figure 42 shows contours of constant x2 in 
the (I&-&c plane. The best agreement (xg = 10.3 for 8 
degrees of freedom) occurs for srec = 0.49 f 0.14 GeV1j2 
and a,&, = 1.032 f 0.028 with a correlation coefficien- 
t p = -0.60 for the two parameters. The <-balance, 
u< /RFX + pc(ee), is more sensitive to the electron mo- 
mentum resolution and is affected by changes in srec and 
c&b in the same way. We use it as a cross check only. 

Figure 43 shows the spectrum of ug/Rrec +p,(ee) from 
the CC/CC+EC 2 data sample and from the fast Monte 
Carlo with the tuned recoil resolution and response pa- 
rameters. Figure 44 shows the corresponding distribu- 
tions for ut/Rrec +p.c(ee). In both cases the agreement 
between data and Monte Carlo simulation is good. A 
Kolmogorov-Smirnov test [46] gives confidence levels of 
IC = 0.33 and 0.37 that the Monte Carlo and data spectra 
derive from the same parent distribution. A x2 test gives 
x2 = 25 and 37, respectively, for 40 bins. 
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FIG. 41. The width of the q-balance distribution versus 
p,(ee) for the 2 data (e) and the fast Monte Carlo simulation 
(0). 
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FIG. 42. The xl + 1 contour for the recoil resolution pa- 
rameters (Ymb and srec. 
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FIG. 43. The q-balance distribution for the 2 data (0) and 
the fast Monte Carlo simulation (-). 
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FIG. 44. The &balance distribution for the 2 data (0) and 
the fast Monte Carlo simulation (-). 
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Figure 45 shows the overall energy flow transverse 
to the beam direction measured by the sum ST = 
xi Ei sinei over all calorimeter cells except cells belong- 
ing to an electron cluster. For W events (ST) = 98.7f0.3 
GeV and for 2 events (ST) = 91.0 f 0.9 GeV. Increased 
transverse energy flow leads to a worse recoil momentum 
resolution and therefore we need to correct the value of 
omb for the W sample to account for this difference. Fig- 
ure 46 relates transverse energy flow ST to resolution LTT 
for a minimum bias event sample. The resolution for 
measuring transverse momentum balance along any di- 
rection is 

UT(&) = 1.42 GeV + 0.15dm + 0.007s~ (49) 

for minimum bias events. The different energy flows 
in W and Z events lead to a correction to o,b of 
aT(98.7 &!v)/uT(91.0 GeV) = 1.03 f 0.01. The un- 
certainty reflects the uncertainties in the determination 
of (ST). This uncertainty does not correlate with sreC. 
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FIG. 45. The transverse energy flow in the W (0) and 2 

(-) data. 

2 bosons are not intrinsically produced with less ener- 
gy flow in the underlying event than W bosons. Rather, 
the requirement of two reconstructed isolated electrons 
biases the event selection in the 2 sample towards events 
with lower energy flow compared to the events in the W 
sample which have only one electron. We demonstrate 
this by loosening the electron identification requirements 
for one of the electrons in the Z sample. We use events 
that were collected using less restrictive trigger condition- 
s for which at Level 2 only one of the electron candidates 
must satisfy the shape and isolation requirements. We 
find that if all electron quality cuts are removed for one 
electron ST increases by 7%, consistent with the ratio of 
the ST values in the W and 2 samples. 
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FIG. 46. The resolution for transverse momentum balance, 
CT, versus the transverse energy flow, ST, for minimum bias 
events (0). The smooth curve is a fit (Eq. 49). 

C. Comparison with W Data 

We compare the recoil momentum distribution in the 
W data to the predictions of the fast Monte Carlo, which 
includes the parameters determined in this section and 
Sec. VI. Figure 47 compares the ~11 spectra from Monte 
Carlo and W data. The mean UII for the W data is 
-0.64 f 0.03 GeV and for the Monte Carlo prediction in- 
cluding backgrounds it is -0.61 f 0.01 GeV, in very good 
agreement. This is important because a bias in ~11 would 
translate into a bias in the determination of mT (Eq. 35). 
The agreement means that recoil momentum response 
and resolution and the ~11 efficiency parameterization de- 
scribe the data well. Figures 48-50 show ~1, UT, and the 
azimuthal difference between electron and recoil direc- 
tions from Monte Carlo and W data. The Kolmogorov- 
Smirnov probabilities for Figs. 47-50 are K, = 0.15, 0.38, 
0.16, and 0.11, respectively. 

VIII. CONSTRAINTS ON THE W BOSON PT 
SPECTRUM 

A. Parameters 

Since we cannot reconstruct a Lorentz invariant mass 
for W + ev decays, knowledge of the transverse momen- 
tum distribution of the W bosons is necessary to measure 
the mass from the kinematic distributions. Theoretical 
calculations provide a formalism to describe the boson pT 
spectrum, but it includes phenomenological parameters 
gr, gs, and ga, which need to be determined experimen- 
tally (Sec. VB). In addition, the boson pT spectrum al- 
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FIG. 47. The ~11 spectrum for the W data (0) 
Monte Carlo simulation (-). 
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FIG. 48. The U.L spectrum for the W data (0) and the 
Monte Carlo simulation (-). 
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FIG. 49. The recoil momentum (UT) spectrum for the W 

data (0) and the Monte Carlo simulation (-). The arrow 
shows the location of the cut. 

FIG. 50. The azimuthal difference between electron and 
recoil directions for the W data (0) and the Monte Carlo 
simulation (-) . 
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so depends on the choice of parton distribution functions 
and AQC~. 

We can measure the W boson pT spectrum only indi- 
rectly by measuring &, the pi of all particles that recoil 
against the W boson. Momentum conservation requires 
the W boson pT to be equal and opposite to &. The 
precision of the GT measurement is insufficient, especial- 
ly for small UT, to constrain the W spectrum as tightly 
as is necessary for a precise W mass measurement. 

We therefore have to find other data sets to constrain 
the model. The formalism that describes the pT spec- 
trum of the W bosons has to simultaneously describe the 
pT spectrum of 2 bosons and the dilepton pT spectrum 
from Drell-Yan production with the same model param- 
eter values. The authors of Ref. [30] find 

gl = O.ll?~$~ GeV2. 

g2 = 0.58?!.; GeV2*’ 

g3 = -1.5fi.i . GeV” 
(50) 

for mass cut-off Qs = 1.6 GeV in Eq. 25 and CTEQBM 
parton distribution functions, by fitting Drell-Yan and 2 
data at different values of Q2. We further constrain these 
parameters using our much larger 2 data sample. 

B. Determination of g2 from 2 + ee Data 

The pT of 2 bosons can be measured more precisely 
than the pi of W bosons by using the e+e- pairs from 
their decays. Figure 51 shows the pT(ee) spectrum ob- 
served in the data. 

FIG. 51. Comparison of the pT(ee) data (0) and simula- 
tion (-) for the best fit g2 using MESA’ parton distribution 
functions. 
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To reduce the background contamination of the sam- 
ple, the invariant mass of 2 candidates must be within 
10.5 GeV of the 2 peak position. This mass window re- 
quirement reduces the background fraction to 2.5%, as 
determined from the dielectron invariant mass spectrum. 
As such it includes a contribution from Drell-Yan e+e- 
production, which has a pT spectrum similar to the sig- 
nal and should not be counted as background in this case. 
To account for this uncertainty we assign an error to the 
background fraction of f2.5%. 

The shape of the background is fixed by a sample of 
events with two electromagnetic clusters which pass the 
same kinematic requirements as our 2 + ee sample, but 
fail the electron identification cuts [47] (sample 1). As a 
cross-check we also use events with two jets, each with 
more than 70% of its energy in the EM calorimeter (sam- 
ple 2). Parameterizations of the two background shapes 
are shown in Fig. 52. Their difference is taken to be the 
uncertainty in background shape. 
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FIG. 52. The background parameterizations for the pT(ee) 

spectrum. 

We use the fast Monte Carlo model to predict the 
pT(ee) spectrum from 2 + ee decays for different set- 
s of parameter vaJues. The fast Monte Carlo simulates 
the detector acceptance and resolution as discussed in 
the previous sections. Figure 53 shows the pT(ee) spec- 
tra predicted by the fast Monte Carlo for MRSA’ parton 
distribution functions and three values of gz, with gi and 
g3 fixed at the values given in Eq. 50. 

The dominant effect of varying gz is to change the 
mean boson PT. Properly normalized and with the back- 
ground contribution added, we use these distributions 
as probability density functions to perform a maximum 
likelihood fit for gs. For a set of discrete values of g2 
we compute the joint likelihood L of the observed pT(ee) 
spectrum. We then fit log L as a function of gs with a 
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FIG. 53. The predicted pT(ee) spectra after detector 
simulation using MFLSA’ parton distribution functions and 
g2 = 0.18, 0.58, and 0.98 GeV2. 

third order polynomial. The maximum of the polynomial 
gives the fitted value of gs. The value of gz has to be fit in- 
dependently for each parton distribution function choice. 
We perform fits for four choices of parton distribution 
functions: MRSA’, MRSD-‘, CTEQZM, and CTEQSM. 
We fit the spectrum over the range pT(ee) < 15 GeV, 
which corresponds to the range accepted by the W selec- 
tion cuts. The fits describe the data well. Table V lists 
the fitted values for gs for the different parton distribu- 
tion function choices. The result of the CTEQ2M fit is 
in good agreement with the value in Eq. 50. 

TABLE V. Fitted values of g2 for different parton distri- 
bution functions. Uncertainties are statistical only. 

pT(ee) < 15 GeV Wee) 
MRSA’ 
MRSD-’ 
CTEQ3M 
CTEQSM 

0.59f0.10 GeV’ 
0.61f0.10 GeV2 
0.54f0.10 GeV2 
0.61f0.10 GeV2 

0.64f0.14 GeV’ 
0.70f0.15 GeV2 
0.57f0.13 GeV2 
0.67f0.14 GeV2 

We estimate systematic uncertainties in the g2 fit by 
running the fast Monte Carlo with different parameter 
values and refitting the predicted pT(ee) spectrum with 
the nominal probability density functions. The uncer- 
tainties in electron momentum response and resolution, 
~11 efficiency parametrization, fiducial cuts, model of ra- 
diative decays, and background translate into a system- 
atic uncertainty in gs of 0.05 GeV2. 

As a cross-check we also fit the spectrum of the az- 
imuthal separation A+(ee) between the two electrons to 
constrain gs. The A$(ee) spectrum has smaller system- 
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atic uncertainties but less statistical sensitivity to gs than 
the A#(ee) spectrum. In Table V we also quote the re- 
sults for gs from a fit to the A$(ee) spectrum. 

The Monte Carlo prediction for the fitted gz value us- 
ing MRSA’ parton distribution functions is superimposed 
as a smooth curve on Fig. 51. The Kolmogorov-Smirnov 
probability that the two distributions are from the same 
parent distribution is K = 0.72 and the x2 is 25.5 for 29 
degrees of freedom. Both of these tests indicate a good 
fit. We use this model to compute the probability density 
functions for the final fits to the kinematic spectra from 
the W sample. 

IX. BACKGROUNDS 

A. W + TV -+ euiiv 

The decay W + TV + evFv is topologically indistin- 
guishable from W + ev. It is included in the fast Monte 
Carlo simulation (Sec. V). This decay is suppressed by 
the branching fraction for T + evP, (17.83 f 0.08)% [18], 
and by the lepton PT cuts. It accounts for 1.6% of events 
in the W sample. 

B. Hadronic Background 

QCD processes can fake the signature of a W + ev 
decay if a hadronic jet fakes the electron signature and 
the transverse momentum balance is mismeasured. 

We estimate this background from the $T spectrum of 
events with an electromagnetic cluster. Electromagnetic 
clusters in events with low $r are almost all due to jets. 
A fraction satisfy our electron selection criteria and fake 
an electron. From the shape of the $T spectrum for these 
events we determine how likely it is for these events to 
have sufficient $T to enter our W sample. 

We determine this shape by selecting isolated electro- 
magnetic clusters that have x2 > 200 and f&k > 10. 
Almost all electrons fail this cut, so that the remaining 
sample consists almost entirely of hadrons. We use data 
taken by a trigger without the & requirement to study 
the efficiencies of this cut for jets. For & < 10 GeV 
we find 1973 such events, while in the same sample 3674 
satisfy our electron selection criteria. If we normalize the 
background spectrum to the electron sample we obtain 
an estimate of the hadronic background in an electron 
candidate sample. Figure 54 shows the & spectra of 
both samples, normalized for $r < 10 GeV. 

In the data collected with the W trigger we find 204 
events that satisfy all the fiducial and kinematic cuts, 
listed in Sec. IV for the W sample, and have x2 > 200 
and ct& > 10. We therefore estimate that 374 back- 
ground events entered the signal sample. This corre- 
sponds to a fraction of the total W sample after all cuts 
of fhad = (1.3 f 0.2) %. For a looser cut on the recoil pT, 
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FIG. 54. The #T spectra of a sample of events passing elec- 
tron identification cuts (- ) and a sample of events failing 
the cuts (0). 

UT < 30 GeV, we find &ad = (1.6 f 0.3) %. The error is 
dominated by uncertainty in the relative normalization 
of the two samples at low &. Figure 55 shows the back- 
ground fraction as a function of luminosity. There is no 
evidence for a significant luminosity dependence. We use 
the background events with pT(V) > 25 GeV to estimate 
the shape of the background contributions to the pT(e), 
m(v), and mT spectra (Fig. 56). 

C. Z-bee 

To estimate the fraction of 2 + ee events which sat- 
isfy the W selection, we use a Monte Carlo sample of 
approximately 100,000 2 + ee events generated with 
the HERWIG program and a detector simulation based on 
GEANT. The boson pT spectrum generated by HERWIG 

agrees reasonably well with the calculation in Ref. [30]. 
2 + ee decays typically enter the W sample when one 
electron satisfies the W cuts and the second electron is 
lost or mismeasured, causing the event to have large &. 

Approximately 1.1% of the 2 + ee events have an 
electron with pseudorapidity 171 > 4.0, which is the 
acceptance limit of the end calorimeters. The frac- 
tion of 2 -+ ee events which contain one electron with 
]q(ei)] < 1.0 and pT(e) > 25 GeV, and another with 
]r,r(ez)] > 4.0 is approximately 0.04%. The contribution 
from the case of an electron lost through the beampipe 
is therefore relatively small. 

An electron is most frequently mismeasured when it 
goes into the regions between the CC and one of the 
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FIG. 55. The fraction of hadron background as a function 
of luminosity. 
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FIG. 56. Shape of mT, pT(e), and pT(V) spectra from 
hadron (- ), 2 (- - -), and 7 +hadron backgrounds (. . . . a) 
with the proper relative normalization. 
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ECs, which are covered only by the hadronic section of 
the calorimeter. These electrons therefore can not be 
identified and their energy is measured in the hadron- 
ic calorimeter. Large & is more likely for these events 
than when both electrons hit the EM calorimeters. The 
mismeasured electron contributes to the recoil when the 
event is treated as a W. The fraction of 2 events in the 
W sample therefore depends on the 21~ cut. 

We find that 10,987 Monte Carlo events pass the CC- 
CC 2 + ee selection, and 758 (1,318) pass the W selec- 
tion with a recoil cut of 15 (30) GeV. The fraction of 2 
events in the W sample is therefore fz = (0.42 f 0.08) % 
for UT < 15 GeV and (0.62 f 0.08) % for UT < 30 GeV. 
The uncertainties quoted include systematic uncertain- 
ties in the matching of momentum scales between Monte 
Carlo and collider data. Figure 56 shows the distribu- 
tions of pT(e), p~( ) Y , and mT for the events that satisfy 
the W selection. 

D. W + TV + hadrons + X 

We estimate the background due to W + TV followed 
by a hadronic tau decay based on two Monte Carlo sam- 
ples. In a sample of W + rv + hadrons + X simulated 
using GEANT, 65 out of 4,514 events pass the fiducial 
and kinematic cuts of the W sample. We use a sam- 
ple of W + TY + hadrons + X simulated by replacing 
the electron shower in W + ev decays from collider data 
with the hadrons from a tau decay, generated by a Monte 
Carlo simulation, to estimate the probability of the tau 
decay products to fake an electron. Of 552 events that 
pass the fiducial and kinematic cuts 145 pass the elec- 
tron identification criteria. With the hadronic branching 
fraction for taus, B(r + hadrons) = 64% we estimate a 
contamination of the W sample of 0.24% from hadronic 
tau decays. The expected background shapes are plotted 
in Fig. 56. 

E. Cosmic Rays 

Cosmic ray muons can cause backgrounds when they 
coincide with a beam crossing and radiate a photon of 
sufficient energy to mimic the signature of the electron 
from W + ev decays. We measure this background by 
searching for muons near the electrons in the W signal 
sample. The muons have to be within 10” of the electron 
in azimuth. Using muon selection criteria similar to those 
in Ref. [49] we observe 18 events with such muons in the 
W sample. We estimate the fraction of cosmic ray events 
in the W sample to be 0.2 f 0.1%. The effect of this 
background on the W mass measurement is negligible. 



X. MASS FITS 

A. Maximum Likelihood Fitting Procedure 

We use a binned maximum likelihood fit to extract the 
W mass. Using the fast Monte Carlo program we com- 
pute the mT, pT(e), and m(v) spectra for 200 hypothe- 
sized values of the W mass between 79.4 and 81.4 GeV. 
For the mT spectrum we use 100 MeV bins and for the 
lepton pT spectra we use 50 MeV bins. The statistical 
precision of the spectra for the W mass fit corresponds 
to about 4 million W decays. When fitting the collider 
data spectra we add the background contributions with 
the shapes and normalizations described in Sec. IX to the 
signal spectra. We normalize the spectra within the fit 
interval and interpret them as probability density func- 
tions to compute the likelihood 

L(m) = fipi(m)“i, (51) 
i=l 

where pi(m) is the probability density for bin i, assuming 
Mw = m, and ni is the number of data entries in bin i. 
The product runs over all N bins inside the fit interval. 
We fit - ln(L(m)) with a quadratic function of m. The 
value of m at which the function assumes its minimum 
is the fitted value of the W mass and the 68% confidence 
level interval is the interval in m for which - In(L(m)) is 
within half a unit of its minimum. 

As a consistency check of the fitting procedure we gen- 
erate 105 Monte Carlo ensembles of 28,323 events each 
with Mw=80.4 GeV. We then fit these ensembles with 
the same probability density functions as the collider da- 
ta spectra, except that we do not include the background 
contributions. Table VI lists the mean, rms, and corre- 
lation matrix of the fitted values. 

TABLE VI. The results of the Monte Carlo ensemble tests 
fitting the MW mass for 105 samples of 28,323 events. 

mean rms 

(GeV) WV) 

correlation matrix 
mT m(e) PQ+) 

Pzi 80.404 80.415 0.067 0.091 0.669 1 0.669 1 0.180 0.630 

Pd”) 80.389 0.105 0.630 0.180 1 

B. Electron pT Spectrum 

We fit the pT(e) spectrum in the region 30 < pT(e) < 
50 GeV. There are 22,898 events in this interval. The 
data points in Fig. 57 represent the pT(e) spectrum from 
the W sample. The solid line shows the sum of the simu- 
lated W signal and the estimated background for the best 
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fit, and the shaded region indicates the sum of the esti- 
mated hadronic, Z + ee, and W + TV -+ hadrons + X 
backgrounds. The maximum likelihood fit gives 

MW = 80.475 f 0.087 GeV 

for the W mass. 
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FIG. 57. Spectrum of pT(e) from the W data. The su- 
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perimposed curve shows the maximum likelihood fit and the 
shaded region the estimated background. 

As a goodness-of-fit test, we divide the fit interval into 
0.5 GeV bins, normalize the integral of the probability 
density function to the number.of events in the fit inter- 
val, and compute x2 = Cz, (yi - Pi)2/yi. The sum runs 
over all N bins, yi is the observed number of events in 
bin i, and Pi is the integral of the normalized probability 
density function over bin i. The parent distribution is 
the x2 distribution for N - 2 degrees of freedom. For 
the spectra in Fig. 57 we compute x2 = 40.6. For 40 
bins there is a 35% probability for x2 2 40.6. Figure 58 
shows the contributions xi = (yi - Pi)/fi to x2 for the 
40 bins in the fit interval. 

We also compare the observed spectrum to the prob- 
ability density function using the Kolmogorov-Smirnov 
test. For a comparison within the fit window we obtain 
n = 0.81 and for the entire histogram K = 0.83. 

Figure 59 shows the sensitivity of the fitted mass value 
to the choice of fit interval. The points in the two plots 
indicate the observed deviation of the fitted mass from 
the value given in Eq. 52. We expect some variation due 
to statistical fluctuations in the spectrum and systematic 
uncertainties in the probability density functions. We 
estimate the effect due to statistical fluctuations using 
the Monte Carlo ensembles described above. We expect 
the fitted values to be inside the shaded regions indicated 
in the two plots with 68% probability. The dashed lines 
indicate the statistical error for the nominal fit. 
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FIG. 59. Variation of the fitted mass with the g@(e) fit 
window limits. See text for details. 
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All tests show that the probability density function 
provides a good description of the observed spectrum. 

C. Transverse Mass Spectrum 

Figure 60 shows the mT spectrum. The points are the 
observed spectrum, the solid line shows signal plus back- 
ground for the best fit, and the shaded region indicates 
the estimated background contamination. We fit in the 
interval 60 < mT < 90 GeV. There are 23,068 events in 
this interval. Figure 61 shows - ln(L(m)/Lo) for this fit 
where Ls is an arbitrary number. The best fit occurs for 

MW = 80.438f0.070 GeV. 

q GeV) 

(53) 

FIG. 60. Spectrum of mT from the W data. The superim- 
posed curve shows the maximum likelihood fit and the shaded 
region shows the estimated background. 

Figure 62 shows the deviation of the data from the fit. 
Summing over all bins in the fitting window, we get x2 = 
79.5 for 60 bins. For 60 bins there is a 3% probability 
to obtain a larger value. The Kolmogorov-Smirnov test 
gives K, = 0.25 within the fit window and K. = 0.84 for 
the entire histogram. Figure 63 shows the sensitivity of 
the fitted mass to the choice of fit interval. 

In spite of the somewhat large value of x2 there is no 
structure apparent in Fig. 62 that would indicate that 
there is a systematic difference between the shapes of the 
observed spectrum and the probability density function. 
The large x2 can be attributed to a few bins that are 
scattered over the entire fit interval, indicating statistical 
fluctuations in the data. This is consistent with the good 
Kolmogorov-Smirnov probability which is more sensitive 
to the shape of the distribution and insensitive to the 
binning. 
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FIG. 61. The likelihood function for the mT fit. 

FIG. 62. The x distribution for the fit to the mT spectrum. 
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FIG. 63. Variation of the fitted mass with the mT fit win- 
dow limits. See text for details. 

XI. CONSISTENCY CHECKS 

A. Neutrino pT Spectrum 

As a consistency check, we also fit the pT(V) spectrum, 
although this measurement is subject to much larger sys- 
tematic uncertainties than the mT and pT(e) fits. Fig- 
ure 64 shows the observed spectrum (points), signal plus 
background for the best fit (solid line), and the estimat- 
ed background (shaded region). For the fit interval 30 < 
pT(Y) < 50 GeV the fitted mass is MW = 80.37 f 0.11 
GeV, in good agreement with the mT and pT(e) fits. We 
compute x2 = 31.8. The probability for a larger value is 
75%. The Kolmogorov-Smirnov test gives )E = 0.20 with- 
in the fit window and K = 0.69 for the entire histogram. 
Figure 65 shows the deviation x between data and fit. 
There is an indication of a systematic deviation between 
the observed spectrum and the resolution function. This 
effect is not very significant. For example, when we in- 
crease the hadronic resolution parameter or& in the sim- 
ulation to 1.11, which corresponds to about 1.5 standard 
deviations, this indication of a deviation between data 
and Monte Carlo vanishes. 

B. Luminosity Dependence 

We divide the W and 2 data samples into four lumi- 
nosity bins 

L < 5 x 1030cm-2s-1 
5 X 1030 < L 7 7 x 1030cm-2s-1: 
7 x 1030 < L 7 9 x 

L 3 
1030cm-2s-1, 

9 x 1030cm-2s-1 
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FIG. 64. Spectrum of pT(V) from the W data. The su- 
perimposed curve shows the maximum likelihood fit and the 
shaded region shows the estimated background. 
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FIG. 65. The x distribution for the fit to the pT(V) spec- 
trum. 

and generate resolution functions for the luminosity dis- 
tribution of these four subsamples. We fit the transverse 
mass and lepton pT spectra from the W samples and the 
dielectron invariant mass spectra from the 2 samples in 
each bin. The fitted masses are plotted in Fig. 66. The 
errors are statistical only. We compute the x2 with re- 
spect to the W mass fit to the mT spectrum from the 
entire data sample. The x2 per degree of freedom (dof) 
for the pT(e) fit is 1.9/4 and for the IT fit is 2.4/4. 
The mT fit has a x2/dof of 2.713. The solid and dashed 
lines in the top plot indicate the W mass value and s- 
tatistical uncertainty from the fit to the mT spectrum 
of the entire data sample. All measurements are in very 
good agreement with this value. In the bottom plot the 
lines indicate the 2 mass fit to the m(ee) spectrum of 
the entire 2 data sample. The measurements in the four 
luminosity bins have a x2/dof of 1.0/3. 

FIG. 66. The fitted W boson masses (a) in bins of luminos- 
ity from the mT (o), pT(e) (o), and pT(V) (*) fits (the points 
are offset for clarity) and the fitted 2 boson masses (b). The 
solid line is the central value for the mT and m(ee) mass fits 

respectively over the entire luminosity range and the dashed 
lines are the statistical errors. 

C. Dependence on ?@ Cut 

We change the cuts on the recoil momentum UT and 
study how well the fast Monte Carlo simulation repro- 
duces the variations in the spectra. We split the W sam- 
ple in two subsamples with ull > 0 and u/l < 0. In the 
simulation we fix the W mass to the value from the mT 
fit in Eq. 53. Figures 67-69 show the mT, m(e), and 
m(v) spectra from the collider data for the subsamples 
with ‘1~11 > 0 and U/I < 0 and the corresponding Monte 
Carlo predictions. Table VII lists the results of com- 
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parisons of collider data and Monte Carlo spectra using 
the Kolmogorov-Smirnov test. Although there is signif- 
icant variation among the shapes of the spectra for the 
different cuts, the fast Monte Carlo models them well. 
Table VII also lists the results of comparisons of collider 
data and Monte Carlo spectra for a W sample selected 
with UT < 30 GeV which consists of 32,361 events. 

TABLE VII. The confidence levels from Kolmogorov- S- 
mirnov tests comparing collider data to Monte Carlo predic- 
tions for A&=80.44 GeV. 

m(e) Pd”) 
interval 60-9?GeV 30-50 GeV 30-50 GeV 
uT < 15 GeV 0.25 0.81 0.20 
YI < 0 0.19 0.78 0.25 
Ull ’ 0 0.61 0.80 0.48 
UT < 30 GeV 0.55 0.99 0.58 
interval 50-100 GeV 25-55 GeV 25-55 GeV 
UT < 15 GeV 0.84 0.83 0.69 
‘1LII < 0 0.77 0.67 0.62 
‘1111 ’ 0 0.60 0.66 0.73 
UT < 30 GeV 0.92 0.80 0.28 
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FIG. 67. Spectra of mT from W data with ~11 < 0 (0) and 
~11 > 0 (0) compared to Monte Carlo simulations (-). 

D. Dependence on Fiducial Cuts 

We divide the azimuth of the recoil momentum, c$(R), 
into eight bins. This binning is sensitive to azimuthal 
nonuniformities in the recoil momentum measurement, 
e.g. because of background from the Main Ring. Fig- 
ure 70 shows the fitted W mass values versus 4(R). The 

5 

pTW WV) 
FIG. 68. Spectra of pT(e) from W data with UJI < 0 (0) 

and ~11 > 0 (0) compared to Monte Carlo simulations (-). 
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FIG. 69. Spectra of pT(u) from W data with UIJ < 0 (0) 
and ~11 > 0 (0) compared to Monte Carlo simulations (-). 
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Main Ring is located at 4 N n/2 and any biases caused by 
background from the Main Ring should appear as struc- 
ture in this direction or in the opposite direction. The 
rms of the eight data points is 124 MeV, consistent with 
the statistical uncertainty of 200 MeV for the data points. 
Thus the data are consistent with azimuthal uniformity. 

-0.2 I- 

a function of 4(e). 

XII. UNCERTAINTIES IN THE 
MEASUREMENT 

FIG. 70. The variation in the W mass from the mT fit as 
a function of 4(R). 

A. Statistical Uncertainties 

FIG. 71. The variation in the W mass from the mT fit as 

We divide the azimuthal direction of the electron, d(e), 
into 32 bins corresponding to the 32 azimuthal modules 
of the CC-EM. Figure 71 shows the fitted W mass val- 
ues versus 4(e). The statistical uncertainty of the data 
points is 400 MeV and the rms of the 32 points is 600 
MeV. Thus there is a 0.6% nonuniformity in the response 
of the CC-EM, consistent with the module-to-module cal- 
ibration of 0.5% [25]. 

Finally, we fit the mT spectrum from the W sample 
and the m(ee) spectrum from the 2 sample for different 
pseudorapidity cuts on the electron direction. We use 
cuts of ]q(e)] c 1.0, 0.7, 0.5, and 0.3. Figure 72 shows 
the change in the W mass versus the q(e) cut using the 
electron energy scale calibration from the corresponding 
2 sample. The shaded region indicates the statistical 
error. Within the uncertainties the mass is independent 
of the n(e) cut. 

FIG. 72. The variation in the W mass versus the n(e) cut. 
The shaded region is the expected statistical variation. 

Table VIII lists the uncertainties, rounded to the n- 
earest 5 MeV, in the W measurement due to the finite 



sizes of the W and 2 samples used in the fits to the mT, 
pT(e), m(v), and m(ee) spectra. The statistical uncer- 
tainty due to the finite 2 sample propagates into the 
W mass measurement through the electron energy scale 

TABLE VIII. Uncertainties in the W mass measurement 
due to finite sample sizes. 

W sample 
2 sample 
total 

mT fit W(e) fit 
70 MeV 85 MeV 
65 MeV 65 MeV 
95 MeV 105 MeV 

PTb’) fit 
105 MeV 
65 MeV 

125 MeV 

B. W Production and Decay Model 

1. Sources of Uncertainty 

Uncertainties in the W production and decay model 
arise from the following sources: the phenomenological 
parameters in the calculation of them(W) spectrum, the 
choice of parton distribution functions, radiative decays, 
and the W boson width. In the following we describe 
how we assess the size of the systematic uncertainties 
introduced by each of these. We summarize the size of 
the uncertainties in Table IX, rounded to the nearest 5 
MeV. 

TABLE IX. Uncertainties in the W mass measurement due 
to W production and decay model. 

mT fit pT(e) fit pT(v) fit 

10 MeV 50 MeV 25 MeV 
&tod distribution functions 20 MeV 50 MeV 30 MeV 
parton luminosity p 10 MeV 10 MeV 10 MeV 
radiative decays 15 MeV 15 MeV 15 MeV 
W width 10 MeV 10 MeV 10 MeV 
total 30 MeV 75 MeV 45 MeV 

8. W Boson pT ~pectrwn 

In Sec. VIII we determine gs so that the predicted 
pT(ee) spectrum agrees with the Z data. In order to 
quantify the uncertainty in the boson pT spectra, we need 
to consider variations in all four parameters, AQCD, gi, 
gs, and gs. We use a series of modified CTEQSM parton 
distribution functions fit with AQCD fixed at discrete val- 
ues 1481 to study the variations in the pi spectrum 
and the fitted W boson mass with these parameters. 
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We cannot constrain all these four parameters simul- 
taneously by using only our Z data. We therefore in- 
troduce an external constraint on AQ~D, The CTEQSM 
fits prefer AQ~D = 158 MeV but are also consistent with 
somewhat higher values [42]. Other measurements give 
a combined value of AQCD = 209-1:: MeV [18]. All da- 
ta are consistent with AQCD between 150 and 250 MeV, 
which we use as the range over which AQCD is allowed to 
vary. 

The requirement that the fast Monte Carlo prediction 
for the average pT(ee) over the range pT(ee) < 15 GeV, 
corrected for background contributions, must agree with 
the value observed in the 2 data, @T(ee)) = 6.05 f 0.07 
GeV, couples the values of AQ~D and g2. Figure 73 shows 
a plot of gz versus AQCD. For any pair of values on the 
curve the fast Monte Carlo predicts a value of (pT(ee)) 
that agrees with the Z data. For any fixed value of AQCD, 
gs is determined to a precision of 0.12 GeV2. This error 
includes the statistical uncertainty (0.09 GeV2) and the 
systematic uncertainty due to normalization and shape 
of the background (0.07 GeV2). All other uncertainties, 
e.g. due to electron momentum resolution and response 
or-selection biases, are negligible. 

r,~,,,,~,,,,~,,,,~, 

Oa2 loo 150 200 250 
A QCD cMeV) 

FIG. 73. Value of g2 as a function of AQCD. The error bar 
indicates the uncertainty in g2 for fixed AQCD. 

If we fix AQCD and g2, the requirement that the aver- 
age pT(ee) predicted by the fast Monte Carlo agree with 
the data allows an additional variation in the parameters 
gi and gs. The residual uncertainty in the measured W 
boson mass due to this variation, however, is small com- 
pared to the uncertainty due to the variation allowed in 
g2 and AQCD and we neglect it. Finally, we obtain the 
uncertainties in the fitted W boson mass listed in Ta- 
ble IX. 
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TABLE X. Variation of fitted W mass with choice of pax- TABLE XI. Changes in fitted W and 2 masses if radiative 
ton distribution function. effects are varied. 

MRSA’ 
MRSD-’ 
CTEQJM 
CTEQSM 

mT fit 
0 

20 MeV 
5 MeV 

-21 MeV 

PT(e) fit 
0 

19 MeV 
48 MeV 

-17 MeV 

PTb’) fit 
0 

20 MeV 
22 MeV 

-30 MeV 

variation mT fit pT(e) fit pT(u) fit m(m) fit 
no radiative effects 50 MeV 43 MeV 30 MeV 143 MeV 
vary RQ byf0.1 3 MeV 4 MeV 0 MeV 19 MeV 

3. Parton Distribution Functions 

The choice of parton distribution function used to de- 
scribe the momentum distribution of the constituents of 
the proton and antiproton affects several components of 
the model: the parton luminosity slope ,8, and the rapid- 
ity and transverse momentum spectrum of the W. 

Using several modern parton distribution function sets 
as input to the fast Monte Carlo model, we generate mT 
and lepton pT spectra. In each case we use the value of gs 
measured for that parton distribution function set using 
our 2 data (Sec. VIII). We then fit them in the same 
way as the spectra from collider data, i.e. using MRSA’ 
parton distribution functions. Table X lists the variation 
of the fitted W mass values relative to MRSA’. 

The MRSA’ and CTEQ3M parton distribution func- 
tions use the measured W charge asymmetry in pir colli- 
sions [50] as input to the fit. MRSD-’ and CTEQ2M do 
not explicitly use the asymmetry. The asymmetry pre- 
dicted by MRSD-’ agrees with the measurement; that 
of CTEQZM disagrees at the level of four standard de- 
viations. We include CTEQBM in our estimate of the 
uncertainty to provide an estimate of the possible vari- 
ations with a rather large deviation from the measured 
asymmetry. 

4. Par-ton Luminosity 

The uncertainty of 10m3 GeV-1 in the parton luminos- 
ity slope p (Sec. V) translates into an uncertainty in the 
fitted W mass. We estimate the sensitivity in the fitted 
W mass by fitting Monte Carlo spectra generated with 
different values of p. 

5. Radiative Decays 

We assign an error to the modeling of radiative de- 
cays based on varying the detector parameters Eo and 
R,J (Sec. V). EO defines the minimum photon energy 
generated and corresponds to a cut-off below which the 
photon does not reach the calorimeter. Re defines the 
maximum separation between the photon and electron 
directions above which the photon energy is not included 
in the electron shower. In general, radiation shifts the 

fitted mass down for the transverse mass and electron 
fits, because for a fraction of the events the photon en- 
ergy is subtracted from the electron. Hence increasing 
& decreases the radiative shift. Similarly, decreasing E,-, 
decreases the radiative shift. Both the fitted W and Z 
masses depend on these parameters. Table XI lists the 
change in the fitted masses if radiative effects are turned 
off completely. To estimate the systematic error, we fit 
Monte Carlo spectra generated with different values for 
EC, and R,-,. For the low value of EO = 50 MeV that we use 
in the simulation, the dependence of the fits on this pa- 
rameter is negligible. The changes in the mass fits when 
varying Re by fO.l are also listed in Table XI. After 
propagating the change in the 2 mass into the electron 
response the result of the W mass measurement changes 
by about 15 MeV for all three spectra. 

There are also theoretical uncertainties in the radia- 
tive decay calculation. Initial state QED radiation is not 
included in the calculation of Ref. [41]. However, initial 
state radiation does not affect the kinematic distributions 
used to fit the mass in the final state. Finally, the cal- 
culation includes only processes in which a single photon 
is radiated. We use the code provided by the authors 
of Ref. [51] to estimate the shift introduced in the mea- 
sured W mass by neglecting two-photon emission. We 
find that two photons, with PT > 100 MeV and sepa- 
rated by AR > 0.3 from the electron, are radiated in 
about 0.24% of all W + ey decays. This reduces the 
mean value of mT within the fit window by 3 MeV. In 
1.1% of all 2 + ee decays two photons, with PT > 100 
MeV and separated by AR > 0.3 from the electrons, are 
radiated. We add the dielectron mass spectrum of these 
2 + eeyr events to our simulated 2 boson lineshape 
and fit the modified lineshape. The fitted mass decreas- 
es by 10 MeV. This shift requires an adjustment of the 
energy scale calibration factor CZEM by 10A4. Neglect- 
ing twophoton emission in both W and 2 boson decays 
then increases the measured W mass by about 5 MeV. 
Since this effect is an order of magnitude smaller than 
the statistical uncertainty in our measurement we do not 
correct for it, but add it in quadrature to the uncertainty 
due to radiative corrections. 

6. W Boson Width 

To determine the sensitivity of the fitted W mass to the 
W width, we generate mT and lepton pT spectra using 
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the fast Monte Carlo model with a range of widths and 
fit them with the nominal templates. The uncertainty on 
the fitted W mass correspond to the uncertainty in the 
measured value of FW = 2.062f0.059 GeV [36]. 

C. Detector Model Parameters 

The uncertainties on the parameters of the detector 
model determined in Sets. VI-VII translate into uncer- 
tainties in the W mass measurement. We study the sen- 
sitivity of the W mass measurement to the values of the 
parameters by fitting the data with spectra generated by 
the fast Monte Carlo with modified input parameters. 

Table XII lists the uncertainties in the measured W 
mass, caused by the individual parameters. We assign 
sets of correlated parameters to the same item in the ta- 
ble. Correlations between items are negligible. For each 
item the uncertainty is determined to typically 5 MeV 
for the mT fit and 10 MeV for the lepton PT fits. We 
therefore round them to the nearest 5 MeV in the table. 
To achieve this precision lo-20 million W + ev decays 
are simulated for each item. 

The residual calorimeter nonlinearity is parametrized 
by the offset 6EM. Calorimeter uniformity refers to a pos- 
sible nonuniformity in response as a function of 77. It is 
limited by the test beam data [12]. The electron momen- 
tum resolution is parametrized by CEM. The electron 
angle calibration includes the effects of the parameters 
(YCDC and crcc, discussed in Appendices A and B. The 
recoil resolution is parametrized by (Ymb and srec and the 
response by arec and ,L&. Electron removal refers to the 
bias Azlll introduced in the U/I measurement by the re- 
moval of the cells occupied by the electron. Selection bias 
refers to the ~11 efficiency. 

TABLE XII. Uncertainties in the W mass measurement 
due to detector model parameters. 

calorimeter linearity 
mT fit m-(e) fit PTb’) fit, 

20 MeV 20 MeV 20 MeV 
calorimeter uniformity 10 MeV 10 MeV 10 MeV 
electron resolution 25 MeV 15 MeV 30 MeV 
electron angle calibration 30 MeV 30 MeV 30 MeV 
electron removal 15 MeV 15 MeV 20 MeV 
selection bias 5 MeV 10 MeV 20 MeV 
recoil resolution 25 MeV 10 MeV 90 MeV 
recoil response 20 MeV 15 MeV 45 MeV 
total 60 MeV 50 MeV 115 MeV 

D. Backgrounds 

We determine the sensitivity of the fit results to the as- 
sumed background normalizations and shapes by repeat- 

ing the fits to the data with varied background shapes 
and normalizations. Table XIII lists the uncertainties 
rounded to the nearest 5 MeV. 

TABLE XIII. Uncertainties in the W mass measurement 
due to backgrounds. 

hadrons 
mT fit PT(e) fit 

10 MeV 15 MeV 
PTb’) fit 
20 MeV 

Z + ee 
w + 7-u 
cosmic rays 
total 

5 MeV 10 MeV 5 MeV 
negligible 
negligible 

10 MeV 20 MeV 20 MeV 

XIII. RESULTS 

We present a precision measurement of the mass of the 
W boson. From a fit to the transverse mass spectrum, 
we measure 

MW = 80.44 f O.lO(stat) f O.O7(syst) GeV. 
(54) 

Adding all errors in quadrature gives 115 MeV. Since we 
calibrate the electron energy scale against the known 2 
mass, we effectively measure the W and 2 mass ratio 

- = 0.8821 f O.OOll(stat) f O.O008(syst). 
MZ (55) 

A 6t to the transverse momentum spectrum of the decay 
electrons gives 

Mw = 80.48 f O.ll(stat) f O.OS(syst) GeV. 
(56) 

Adding all errors in quadrature gives 140 MeV. As ex- 
pected, the measurement from the mT spectrum has a 
larger uncertainty from detector effects (65 MeV) than 
that from the pT(e) spectrum (50 MeV). On the other 
hand the mT fit is less sensitive to the W production 
model (30 MeV) than the pT(e) fit (75 MeV). The good 
agreement between the two results indicates that we un- 
derstand the ingredients of our model and their uncer- 
tainties. In the end, the mT fit gives the more precise 
result and we quote this as our final result. However the 
fit to the pT(e) spectrum may become more competitive 
in the future with larger data samples and better con- 
straints on the W production dynamics. 

Table XIV lists the DO W mass measurements from 
fits to the mT spectra from the 1992-1993 [12] and the 
1994-1995 data sets and their uncertainties. As indicated 
in Table XIV, some errors are common to the two mea- 
surements. Since both analyses use the same W produc- 
tion and decay model we assign the uncertainties quoted 
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in Sec. XIIB to both measurements. The precision of 
the electron angle calibration has improved compared to 
Ref. [12] and we use the reduced uncertainty for both 
measurements. All uncertainties due to detector model 
parameters, which were measured using statistically in- 
dependent data sets, are uncorrelated because their pre- 
cision is dominated by statistical fluctuations. In order 
to combine the two measurements we weight them by 
their uncorrelated errors 6, and St, 

The uncertainty is then given by 

6Mw = 
J 

1 
l/6; + l/6; 

+d2, 

(57) 

where 6 is the common uncertainty from the third column 
in Table XIV. The combination of the DO measurements 
from the 1992-1993 and 19941995 data gives 

MW = 80.43 f 0.11 GeV. (59) 

TABLE XIV. Summary of results from the 1992-1993 and 
1994-1995 data sets with the common and uncorrelated er- 
rors. 

1992-1993 1994-1995 common 
MW from mT fit 80.35 GeV 80.44 GeV 
W statistics 140 MeV 70 MeV 
2 statistics 160 MeV 65 MeV 
calorimeter linearity 20 MeV 
calorimeter uniformity 10 MeV 
electron resolution 70 MeV 20 MeV 
electron angle calibration 30 MeV 
recoil resolution 90 MeV 25 MeV 
recoil response 50 MeV 20 MeV 
electron removal 35 MeV 15 MeV 
selection bias 30 MeV 5 MeV 
backgrounds 35 MeV 10 MeV 
W production/decay 30 MeV 
total uncertainty 255 MeV 105 MeV 50 MeV 

The DO measurement is in good agreement with pre- 
vious measurements and is more precise than all the pre- 
viously published measurements combined. Table XV 
lists previously published measurements with uncertain- 
ties below 500 MeV. A global fit to all electroweak mea- 
surements from the LEP experiments predicts Mw = 
80.278 f 0.049 GeV [9]. Figure 74 gives a graphical rep- 
resentation of these data. 

We evaluate the radiative corrections Ar, defined in 
Eq. 1. Our measurement of Mw from Eq. 59 leads to 

Ar = -0.0288 f 0.0070, (60) 

TABLE XV. Previously published measurements of the W 
boson mass. 

measurement 
CDF 90 
UA2 92 
CDF 95 
DO 96 
OPAL 96 
DELPHI 97 
L3 97 
ALEPH 97 

Mw (GeV) 
79.91f0.39 
80.36f0.37 
80.41f0.18 
80.35f0.27 
80 40f0.4s 
80:4Ofodfi5 
80 80f0.48 
80:14fod::5 

reference 

;:i; 
WI 
WI 

1;:; 

.:::::;, ::::::: 
i/i///// 
.:::/:/;. CDF 90 (W+ev,pv) 
:;/;/i/; 
: j;/::; j ..,. UA2 92 (W+ev) 
,$$i: :..::: 
4&w- CDF 95 (W+ev&v) 
f;$ 
,;,;: 
g;i;; 

D0 96 (W-+ev) 

.:.:::: ::::.:+ OPAL 96 ,iiii$,i T$iii 
i/;/i/;: DELPHI 97 .;;;;$ $$ 
;il’:- L3 97 
$& 
g; ALEPH 97 ::$gy “$ 3; 
:$+a- D0 97 (W+ev) :$$ 
$$ (this measurement) 

I”“l”“l”“l”“I”“I 
79.5 80 80.5 81 81.5 82 

Mw (@VI 

FIG. 74. A comparison of this measurement with previous- 
ly published W mass measurements (Table XV). The shaded 
region indicates the predicted W mass value from global fits 
to the 2 lineshape data [9]. 

4.1 standard deviations from the tree level value. In 
Fig. 75 we compare the measured W and top quark mass- 
es [20] to the values predicted by the Standard Model for 
a range of Higgs mass values [53]. Also shown is the pre- 
diction from the calculation in Ref. [21] for a model in- 
volving supersymmetric particles assuming the chargino, 
Higgs, and left-handed selectron masses are greater than 
90 GeV. The measured values are in agreement with the 
prediction of the Standard Model. 
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APPENDIX A: TRACK POSITION 
CALIBRATION 

We use cosmic ray muons which traverse the entire de- 
tector and pass close to the beam position to calibrate 
the z-measurement of the track in the CDC. We predict 
the trajectory of the muon through the central detec- 
tor by connecting the incoming and outgoing hits in the 
innermost muon chambers by a straight line. The cen- 
ter of gravity of the incoming and outgoing CDC tracks 
are then calibrated relative to this line. Figure 76 shows 
the difference between the predicted and the actual Z- 
positions of the track centers of gravity. These data are 
fit to a straight line. We find the track position must be 
scaled by the fitted slope, ocDc = 0.9868 f 0.0004. 

A scintillating fiber detector was inserted between the 
CDC and the CC to calibrate the track z-position. The 
detector is built from 20 modules, each constructed on 
an aluminum support plate 93.4 cm long and 16.5 cm 
wide. Scintillating fibers, 12.7 cm long, were laid across 
the width of the module every 11.43 cm along the support 
plate. The eight scintillating fibers on each module were 
connected to a clear waveguide and read out with a pho- 
tomultiplier tube. The modules are mounted lengthwise 
along the cylinder of the CDC with half of the modules 
covering +Z and the other half --z. In the r-4 view each 
module subtends 7r/16 radians with the fibers running az- 
imuthally. Because of spatial constraints not the entire 
CDC was covered. 

When a fiber is hit by a charged particle the z-position 
of the associated track, at the fiber radius, is compared 
with the fiber z-position. The z-position of the track at 
the radial position of the fiber is determined from the di- 
rection and center of gravity of the track. By comparing 
the z-position of the track and the hit fiber, we determine 
that a scale of (YCDC = 0.989 f 0.001 is needed to correct 
the track. 

We also use a sample of HOW-pi dimuon events from 
pjj collisions where both muons originate from the same 

Combining all measurements of CYoDC gives (YCDC = 
0.988 f 0.001, which we use in the reconstruction of the 

interaction vertex. We reconstruct the muon trajectories electrons in the W and 2 data samples. 

E 

-1.5- 
-80 -60-40-20 0 20 40 60 80 

z (cm> 
FIG. 76. The difference between the predicted and the ac- 

tual z-positions of the track center of gravity. 

from their hits in the innermost muon chambers and the 
CDC. For both muons we determine the point of closest 
approach of the trajectory to the beam, zvtx(p). We then 
scale the z-position of the CDC track to minimize 

x2= c 
events ( 

%x(M) - %x(/-JUZ) 2 
, 

UP ) 
(AlI 

where (TV is chosen so that the minimum value of x2 e- 
quals the number of events minus one. The minimum 
occurs at QlCDC = 0.9863fO.0011. The same analysis ap- 
plied to a Z + pp sample gives oCDC = 0.9878 f 0.0014 
and is shown in Fig. 77. 
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FIG. 77. The x2 versus CYonC value. The arrows indicate 
the statistical error on the fit. 

APPENDIX B: ELECTRON SHOWER POSITION 
ALGORITHM 

We determine the position of the electron shower cen- 
troid &a1 = (zcal,gVcal,~,& in the calorimeter from the 
energy depositions in the third EM layer by computing 
the weighted mean of the positions & of the cell centers, 

c. w& 
&al = *. 

The weights are given by 

WI 

where Ei is the energy in cell i, wug is a parameter which 
depends upon q(e), and E(e) is the energy of the electron. 
We calibrate the algorithm using Monte Carlo electrons 
simulated using GEANT and electrons from the 2 + ee 
data. We apply a polynomial correction as a function of 
,rcai and e(e) based on the Monte Carlo electrons. We 
refine the calibration with the Z + ee data by exploit- 
ing the fact that both electrons originate from the same 
vertex. Using the algorithm given by Eq. Al we deter- 
mine a vertex for each electron from the shower centroid 
and the track center of gravity. We minimize the dif- 
ference between the two vertex positions as a function 
of a scale factor ace. More complex correction func- 
tions do not improve the x2. The correction factor is 
crco = 0.9980 f 0.0005, where the error includes possible 
variations of the functional form of the correction. 

* Visitor from Universidad San Francisco de Quito, Quito, 
Ecuador. 

+ Visitor from IHEP, Beijing, China. 
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